Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Cell Physiol ; 239(2): e31169, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38193350

RESUMO

Alveolar epithelial cell (AEC) necroptosis is critical to disrupt the alveolar barrier and provoke acute lung injury (ALI). Here, we define calcitonin gene-related peptide (CGRP), the most abundant endogenous neuropeptide in the lung, as a novel modulator of AEC necroptosis in lipopolysaccharide (LPS)-induced ALI. Upon LPS-induced ALI, overexpression of Cgrp significantly mitigates the inflammatory response, alleviates lung tissue damage, and decreases AEC necroptosis. Similarly, CGRP alleviated AEC necroptosis under the LPS challenge in vitro. Previously, we identified that long optic atrophy 1 (L-OPA1) deficiency mediates mitochondrial fragmentation, leading to AEC necroptosis. In this study, we discovered that CGRP positively regulated mitochondrial fusion through stabilizing L-OPA1. Mechanistically, we elucidate that CGRP activates AMP-activated protein kinase (AMPK). Furthermore, the blockade of AMPK compromised the protective effect of CGRP against AEC necroptosis following the LPS challenge. Our study suggests that CRGP-mediated activation of the AMPK/L-OPA1 axis may have potent therapeutic benefits for patients with ALI or other diseases with necroptosis.


Assuntos
Lesão Pulmonar Aguda , Animais , Masculino , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/tratamento farmacológico , Células Epiteliais Alveolares/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Linhagem Celular , GTP Fosfo-Hidrolases/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Necroptose , Transdução de Sinais
2.
Lab Invest ; 104(3): 100319, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38158123

RESUMO

Effective inhibition of macrophage activation is critical for resolving inflammation and restoring pulmonary function in patients with chronic obstructive pulmonary disease (COPD). In this study, we identified the dual-enhanced cyclooxygenase-2 (COX-2)/soluble epoxide hydrolase (sEH) as a novel regulator of macrophage activation in COPD. Both COX-2 and sEH were found to be increased in patients and mice with COPD and in macrophages exposed to cigarette smoke extract. Pharmacological reduction of the COX-2 and sEH by 4-(5-phenyl-3-{3-[3-(4-trifluoromethylphenyl)-ureido]-propyl}-pyrazol-1-yl)-benzenesulfonamide (PTUPB) effectively prevented macrophage activation, downregulated inflammation-related genes, and reduced lung injury, thereby improving respiratory function in a mouse model of COPD induced by cigarette smoke and lipopolysaccharide. Mechanistically, enhanced COX-2/sEH triggered the activation of the NACHT, LRR, and PYD domains-containing protein 3 inflammasome, leading to the cleavage of pro-IL-1ß into its active form in macrophages and amplifying inflammatory responses. These findings demonstrate that targeting COX-2/sEH-mediated macrophage activation may be a promising therapeutic strategy for COPD. Importantly, our data support the potential use of the dual COX-2 and sEH inhibitor PTUPB as a therapeutic drug for the treatment of COPD.


Assuntos
Ativação de Macrófagos , Doença Pulmonar Obstrutiva Crônica , Camundongos , Humanos , Animais , Ciclo-Oxigenase 2/metabolismo , Inflamação/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Inflamassomos/metabolismo
3.
J Cell Physiol ; 237(7): 3030-3043, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35478455

RESUMO

Necroptosis, a recently described form of programmed cell death, is the main way of alveolar epithelial cells (AECs) death in acute lung injury (ALI). While the mechanism of how to trigger necroptosis in AECs during ALI has been rarely evaluated. Long optic atrophy protein 1 (L-OPA1) is a crucial mitochondrial inner membrane fusion protein, and its deficiency impairs mitochondrial function. This study aimed to investigate the role of L-OPA1 deficiency-mediated mitochondrial dysfunction in AECs necroptosis. We comprehensively investigated the detailed contribution and molecular mechanism of L-OPA1 deficiency in AECs necroptosis by inhibiting or activating L-OPA1. First, our data showed that L-OPA1 expression was downregulated in the lungs and AECs under the lipopolysaccharide (LPS) challenge. Furthermore, inhibition of L-OPA1 aggravated the pathological injury, inflammatory response, and necroptosis in the lungs of LPS-induced ALI mice. In vitro, inhibition of L-OPA1 induced necroptosis of AECs, while activation of L-OPA1 alleviated necroptosis of AECs under the LPS challenge. Mechanistically, inhibition of L-OPA1 aggravated necroptosis of AECs by inducing mitochondrial fragmentation and reducing mitochondrial membrane potential. While activation of L-OPA1 had the opposite effects. In summary, these findings indicate for the first time that L-OPA1 deficiency mediates mitochondrial fragmentation, induces necroptosis of AECs, and exacerbates ALI in mice.


Assuntos
Lesão Pulmonar Aguda , Células Epiteliais Alveolares , GTP Fosfo-Hidrolases/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , GTP Fosfo-Hidrolases/genética , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Mitocôndrias/metabolismo , Necroptose
4.
Mol Med ; 28(1): 85, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907805

RESUMO

BACKGROUND: Uncontrolled inflammation is an important factor in the occurrence and development of acute lung injury (ALI). Fibroblast growth factor-inducible 14 (Fn14), a plasma membrane-anchored receptor, takes part in the pathological process of a variety of acute and chronic inflammatory diseases. However, the role of Fn14 in ALI has not yet been elucidated. This study aimed to investigate whether the activation of Fn14 exacerbated lipopolysaccharide (LPS)-induced ALI in mice. METHODS: In vivo, ALI was induced by intratracheal LPS-challenge combined with/without Fn14 receptor blocker aurintricarboxylic acid (ATA) treatment in C57BL/6J mice. Following LPS administration, the survival rate, lung tissue injury, inflammatory cell infiltration, inflammatory factor secretion, oxidative stress, and NLRP3 inflammasome activation were assessed. In vitro, primary murine macrophages were used to evaluate the underlying mechanism by which Fn14 activated the NLRP3 inflammasome. Lentivirus was used to silence Fn14 to observe its effect on the activation of NLRP3 inflammasome in macrophages. RESULTS: In this study, we found that Fn14 expression was significantly increased in the lungs of LPS-induced ALI mice. The inhibition of Fn14 with ATA downregulated the protein expression of Fn14 in the lungs and improved the survival rate of mice receiving a lethal dose of LPS. ATA also attenuated lung tissue damage by decreasing the infiltration of macrophages and neutrophils, reducing inflammation, and suppressing oxidative stress. Importantly, we found that ATA strongly inhibited the activation of NLRP3 inflammasome in the lungs of ALI mice. Furthermore, in vitro, TWEAK, a natural ligand of Fn14, amplified the activation of NLRP3 inflammasome in the primary murine macrophage. By contrast, inhibition of Fn14 with shRNA decreased the expression of Fn14, NLRP3, Caspase-1 p10, and Caspase-1 p20, and the production of IL-1ß and IL-18. Furthermore, the activation of Fn14 promoted the production of reactive oxygen species and inhibited the activation of Nrf2-HO-1 in activated macrophages. CONCLUSIONS: Our study first reports that the activation of Fn14 aggravates ALI by amplifying the activation of NLRP3 inflammasome. Therefore, blocking Fn14 may be a potential way to treat ALI.


Assuntos
Lesão Pulmonar Aguda , Inflamassomos , Receptor de TWEAK/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Caspase 1/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
5.
Int J Mol Sci ; 22(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34639055

RESUMO

Organ fibrosis often ends in eventual organ failure and leads to high mortality. Although researchers have identified many effector cells and molecular pathways, there are few effective therapies for fibrosis to date and the underlying mechanism needs to be examined and defined further. Epoxyeicosatrienoic acids (EETs) are endogenous lipid metabolites of arachidonic acid (ARA) synthesized by cytochrome P450 (CYP) epoxygenases. EETs are rapidly metabolized primarily via the soluble epoxide hydrolase (sEH) pathway. The sEH pathway produces dihydroxyeicosatrienoic acids (DHETs), which have lower activity. Stabilized or increased EETs levels exert several protective effects, including pro-angiogenesis, anti-inflammation, anti-apoptosis, and anti-senescence. Currently, intensive investigations are being carried out on their anti-fibrotic effects in the kidney, heart, lung, and liver. The present review provides an update on how the stabilized or increased production of EETs is a reasonable theoretical basis for fibrosis treatment.


Assuntos
Suscetibilidade a Doenças , Eicosanoides/efeitos adversos , Fibrose/etiologia , Animais , Ácido Araquidônico/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Gerenciamento Clínico , Eicosanoides/metabolismo , Fibrose/metabolismo , Fibrose/patologia , Fibrose/terapia , Humanos , Redes e Vias Metabólicas , Especificidade de Órgãos
6.
J Cell Physiol ; 235(12): 9910-9921, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32452554

RESUMO

Epoxyeicosatrienoic acids (EETs) derived from arachidonic acid exert anti-inflammation effects. We have reported that blocking the degradation of EETs with a soluble epoxide hydrolase (sEH) inhibitor protects mice from lipopolysaccharide (LPS)-induced acute lung injury (ALI). The underlying mechanisms remain essential questions. In this study, we investigated the effects of EETs on the activation of nucleotide-binding domain leucine-rich repeat-containing receptor, pyrin domain-containing-3 (NLRP3) inflammasome in murine macrophages. In an LPS-induced ALI murine model, we found that sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl), TPPU, profoundly attenuated the pathological injury and inhibited the activation of the NLRP3 inflammasome, characterized by the reduction of the protein expression of NLRP3, ASC, pro-caspase-1, interleukin precursor (pro-IL-1ß), and IL-1ß p17 in the lungs of LPS-treated mice. In vitro, primary peritoneal macrophages from C57BL/6 were primed with LPS and activated with exogenous adenosine triphosphate (ATP). TPPU treatment remarkably reduced the expression of NLRP3 inflammasome-related molecules and blocked the activation of NLRP3 inflammasome. Importantly, four EETs (5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET) inhibited the activation of NLRP3 inflammasome induced by LPS + ATP or LPS + nigericin in macrophages in various degree. While the inhibitory effect of 5,6-EET was the weakest. Mechanismly, EETs profoundly decreased the content of reactive oxygen species (ROS) and restored the calcium overload in macrophages receiving LPS + ATP stimulation. In conclusion, this study suggests that EETs inhibit the activation of the NLRP3 inflammasome by suppressing calcium overload and ROS production in macrophages, contributing to the therapeutic potency to ALI.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Ácidos Araquidônicos/farmacologia , Epóxido Hidrolases/genética , Ácidos Graxos Monoinsaturados/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Animais , Ácido Araquidônico/química , Epóxido Hidrolases/antagonistas & inibidores , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamassomos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Compostos de Fenilureia/farmacologia , Piperidinas/farmacologia
7.
Biochem Biophys Res Commun ; 523(4): 1020-1026, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-31973813

RESUMO

Non-alcoholic fatty liver disease (NAFLD) affects 25% of the global adult population, and no effective pharmacological treatment has been found. Products of arachidonic acid metabolism have been developed into a novel therapy for metabolic syndrome and diabetes. It has been demonstrated that protective actions of a novel dual cyclooxygenase-2 (COX-2) and soluble epoxide hydrolase (sEH) inhibitor, PTUPB, on the metabolic abnormalities. Here, we investigated the effects of PTUPB on hepatic steatosis in high-fat diet (HFD)-induced obese mice, as well as in hepatocytes in vitro. We found that PTUPB treatment reduced body weight, liver weight, liver triglyceride and cholesterol content, and the expression of lipolytic/lipogenic and lipid uptake related genes (Acc, Cd36, and Cidec) in HFD mice. In addition, PTUPB treatment arrested fibrotic progression with a decrease of collagen deposition and expression of Col1a1, Col1a3, and α-SMA. In vitro, PTUPB decreased palmitic acid-induced lipid deposition and downregulation of lipolytic/lipogenic genes (Acc and Cd36) in hepatocytes. Additionally, we found that PTUPB reduced the production of pro-inflammatory cytokines and suppressed the NLRP3 inflammasome activation in HFD mice and hepatocytes. In conclusion, dual inhibition of COX-2/sEH attenuates hepatic steatosis by inhibiting the NLRP3 inflammasome activation. PTUPB might be a promising potential therapy for liver steatosis associated with obesity.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Epóxido Hidrolases/metabolismo , Inflamação/patologia , Fígado/enzimologia , Fígado/patologia , Cirrose Hepática/enzimologia , Cirrose Hepática/patologia , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/patologia
8.
Cell Biol Int ; 44(1): 98-107, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31329322

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by excessive deposition of extracellular matrix (ECM) and chronic inflammation with limited therapeutic options. Psoralen, a major active component extracted from Psoralea corylifolia L. seed, has several biological effects. However, the role of psoralen in IPF is still unclear. Here, we hypothesized that psoralen played an essential role in IPF in the inhibition of fibroblast proliferation and inflammatory response. A murine model of IPF was established by injecting bleomycin (BLM) intratracheally, and psoralen was administered for 14 days from the 7th to 21st day after BLM injection. Our results demonstrated that psoralen treatment reduced body weight loss and improved the survival rate of mice with IPF. Histological and immunofluorescent examination showed that psoralen alleviated BLM-induced lung parenchymal inflammatory and fibrotic alteration. Furthermore, psoralen inhibited proliferation and collagen synthesis of mouse fibroblasts and partially reversed BLM-induced expression of α-smooth muscle actin at both the tissue and cell level. Moreover, psoralen decreased the expression of transforming growth factor-ß1, interleukin-1ß, and tumor necrosis factor-α in the lungs of BLM-stimulated mice. Our results reveale for the first time that psoralen exerts therapeutic effects against IPF in a BLM-induced murine model.

9.
J Cell Physiol ; 234(4): 4641-4654, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30256406

RESUMO

Gluconic metabolic reprogramming, immune response, and inflammation are intimately linked. Glycolysis involves in the pathologic progress in acute and chronic inflammatory diseases. However, the involvement of glycolysis in the acute lung injury (ALI) is still unclear. This study investigated the role of glycolysis in an animal model of ALI. First, we found that lactate content in serum was remarkably increased in ALI patients and a murine model induced by intratracheal administration of lipopolysaccharide (LPS). The key proteins involving in glycolysis were robustly elevated, including HK2, PKM2, and HIF-1α. Intriguingly, inhibition of glycolysis by 2-deoxyglucose (2-DG) pronouncedly attenuated the lung tissue pathological injury, accumulation of neutrophil, oxidative stress, expression of proinflammatory factors in the lung of ALI mice induced by LPS. The 2-DG treatment also strongly suppressed the activation of the NOD-like receptor (NLR) family and pyrin domain-containing protein 3 (NLRP3) inflammasome. Furthermore, we investigated the role of glycolysis in the inflammatory response of primary murine macrophages activated by LPS in vitro. We found that the 2-DG treatment remarkably reduced the expression of proinflammatory factors induced by LPS, including tumor necrosis factor-α messenger RNA (mRNA), pro-interleukin (IL)-1ß mRNA, pro-IL-18 mRNA, NLRP3 mRNA, caspase-1 mRNA, and IL-1ß protein. Altogether, these data provide a novel link between gluconic metabolism reprogramming and uncontrolled inflammatory response in ALI. This study suggests glycolytic inhibition as an effective anti-inflammatory strategy in treating ALI.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Anti-Inflamatórios/farmacologia , Desoxiglucose/farmacologia , Glicólise/efeitos dos fármacos , Lipopolissacarídeos , Pulmão/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Estudos de Casos e Controles , Células Cultivadas , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/patologia , Masculino , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fatores de Tempo
10.
Photochem Photobiol Sci ; 15(8): 1012-9, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27417708

RESUMO

A series of composites consisting of anatase TiO2 nanocrystals and three-dimensional (3D) graphene aerogel (TiO2-GA) were self-assembled directly from tetrabutyl titanate and graphene oxides via a one-pot hydrothermal process. TiO2 was found to uniformly distribute inside the 3D network of GA in the resulting composites with large surface areas (SBET > 125 m(2) g(-1)) and high pore volumes (Vp > 0.22 cm(3) g(-1)). In comparison with GA and TiO2, the composites possessed much higher adsorption capacities and visible light photocatalytic activity in the degradation of rhodamine B (RhB). With an initial concentration of 20.0 mg L(-1) of RhB, the adsorptive decolourization of RhB was as high as 95.1% and the total decolourization value reached up to 98.7% under visible light irradiation over 5.0 mg of the resulting composites. It was elucidated that the physical and chemical properties of the TiO2-GA composites could be ascribed to their unique 3D nanoporous structure with high surface areas and the synergetic activities of graphene nanosheets and TiO2 nanoparticles.

11.
Sheng Li Xue Bao ; 68(2): 207-14, 2016 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-27108909

RESUMO

Eukaryotic translation initiation factor 4G (eIF4G) is a scaffold component of eukaryotic translation initiation factor 4F (eIF4F) complex, which takes principal part in the initiating of protein synthesis. Both two subtypes (eIF4G1 and eIF4G2) of eIF4G were found to be closely related with various tumors. The eIF4G1 expression is significantly up-regulated in breast cancer, cervical cancer, nasopharyngeal carcinoma, lung squamous cell carcinoma, prostatic carcinoma and other malignant tumors, compared with those in adjacent tissues; and the eIF4G2 is obviously over-expressed in diffuse large B cell lymphoma and acute myeloid leukemia, but low-expressed in bladder transitional cell carcinoma. This paper reviews the progress in the study of the role of eIF4G in tumor genesis, development, diagnosis and prognosis.


Assuntos
Neoplasias , Fator de Iniciação Eucariótico 4G , Humanos , Biossíntese de Proteínas , Regulação para Cima
12.
Int J Biol Sci ; 19(1): 242-257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36594089

RESUMO

The triggering receptor expressed on myeloid cells-1 (TREM-1) is a pro-inflammatory immune receptor potentiating acute lung injury (ALI). However, the mechanism of TREM-1-triggered inflammation response remains poorly understood. Here, we showed that TREM-1 blocking attenuated NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome activation and glycolysis in LPS-induced ALI mice. Then, we observed that TREM-1 activation enhanced glucose consumption, induced glycolysis, and inhibited oxidative phosphorylation in macrophages. Specifically, inhibition of glycolysis with 2-deoxyglucose diminished NLRP3 inflammasome activation of macrophages triggered by TREM-1. Hypoxia-inducible factor-1α (HIF-1α) is a critical transcriptional regulator of glycolysis. We further found that TREM-1 activation facilitated HIF-1α accumulation and translocation to the nucleus via the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway. Inhibiting mTOR or HIF-1α also suppressed TREM-1-induced metabolic reprogramming and NLRP3/caspase-1 activation. Overall, the mTOR/HIF-1α/glycolysis pathway is a novel mechanism underlying TREM-1-governed NLRP3 inflammasome activation. Therapeutic targeting of the mTOR/HIF-1α/glycolysis pathway in TREM-1-activated macrophages could be beneficial for treating or preventing inflammatory diseases, such as ALI.


Assuntos
Lesão Pulmonar Aguda , Inflamassomos , Animais , Camundongos , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Endogâmicos NOD , Macrófagos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Glicólise , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Mamíferos/metabolismo
13.
Oxid Med Cell Longev ; 2022: 5759626, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35509835

RESUMO

Background: Arachidonic acid (ARA) metabolites are involved in the pathogenesis of epithelial-mesenchymal transformation (EMT). However, the role of ARA metabolism in the progression of EMT during pulmonary fibrosis (PF) has not been fully elucidated. The purpose of this study was to investigate the role of cytochrome P450 oxidase (CYP)/soluble epoxide hydrolase (sEH) and cyclooxygenase-2 (COX-2) metabolic disorders of ARA in EMT during PF. Methods: A signal intratracheal injection of bleomycin (BLM) was given to induce PF in C57BL/6 J mice. A COX-2/sEH dual inhibitor PTUPB was used to establish the function of CYPs/COX-2 dysregulation to EMT in PF mice. In vitro experiments, murine alveolar epithelial cells (MLE12) and human alveolar epithelial cells (A549) were used to explore the roles and mechanisms of PTUPB on transforming growth factor (TGF)-ß1-induced EMT. Results: PTUPB treatment reversed the increase of mesenchymal marker molecule α-smooth muscle actin (α-SMA) and the loss of epithelial marker molecule E-cadherin in lung tissue of PF mice. In vitro, COX-2 and sEH protein levels were increased in TGF-ß1-treated alveolar epithelial cells (AECs). PTUPB decreased the expression of α-SMA and restored the expression of E-cadherin in TGF-ß1-treated AECs, accompanied by reduced migration and collagen synthesis. Moreover, PTUPB attenuated TGF-ß1-Smad2/3 pathway activation in AECs via Nrf2 antioxidant cascade. Conclusion: PTUPB inhibits EMT in AECs via Nrf2-mediated inhibition of the TGF-ß1-Smad2/3 pathway, which holds great promise for the clinical treatment of PF.


Assuntos
Fibrose Pulmonar , Fator de Crescimento Transformador beta1 , Animais , Camundongos , Células Epiteliais Alveolares/metabolismo , Caderinas/metabolismo , Ciclo-Oxigenase 2/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Fibrose Pulmonar/patologia , Pirazóis , Sulfonamidas , Fator de Crescimento Transformador beta1/metabolismo
14.
J Pers Med ; 12(3)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35330385

RESUMO

Expanded non-coding RNA repeats of CCUG are the underlying genetic causes for myotonic dystrophy type 2 (DM2). There is an urgent need for effective medications and potential drug targets that may alleviate the progression of the disease. In this study, 3140 small-molecule drugs from FDA-approved libraries were screened through lethality and locomotion phenotypes using a DM2 Drosophila model expressing 720 CCTG repeats in the muscle. We identified ten effective drugs that improved survival and locomotor activity of DM2 flies, including four that share the same predicted targets in the TGF-ß pathway. The pathway comprises two major branches, the Activin and BMP pathways, which play critical and complex roles in skeletal development, maintenance of homeostasis, and regeneration. The Drosophila model recapitulates pathological features of muscle degeneration in DM2, displaying shortened lifespan, a decline in climbing ability, and progressive muscle degeneration. Increased levels of p-smad3 in response to activin signaling were observed in DM2 flies. Decreased levels of activin signaling using additional specific inhibitors or genetic method ameliorated climbing defects, crushed thoraxes, structure, and organization of muscle fibers. Our results demonstrate that a decrease in activin signaling is sufficient to rescue muscle degeneration and is, therefore, a potential therapeutic target for DM2.

15.
Exp Mol Med ; 54(11): 2077-2091, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36443565

RESUMO

Necroptosis is the major cause of death in alveolar epithelial cells (AECs) during acute lung injury (ALI). Here, we report a previously unrecognized mechanism for necroptosis. We found an accumulation of mitochondrial citrate (citratemt) in lipopolysaccharide (LPS)-treated AECs because of the downregulation of Idh3α and citrate carrier (CIC, also known as Slc25a1). shRNA- or inhibitor-mediated inhibition of Idh3α and Slc25a1 induced citratemt accumulation and necroptosis in vitro. Mice with AEC-specific Idh3α and Slc25a1 deficiency exhibited exacerbated lung injury and AEC necroptosis. Interestingly, the overexpression of Idh3α and Slc25a1 decreased citratemt levels and rescued AECs from necroptosis. Mechanistically, citratemt accumulation induced mitochondrial fission and excessive mitophagy in AECs. Furthermore, citratemt directly interacted with FUN14 domain-containing protein 1 (FUNDC1) and promoted the interaction of FUNDC1 with dynamin-related protein 1 (DRP1), leading to excessive mitophagy-mediated necroptosis and thereby initiating and promoting ALI. Importantly, necroptosis induced by citratemt accumulation was inhibited in FUNDC1-knockout AECs. We show that citratemt accumulation is a novel target for protection against ALI involving necroptosis.


Assuntos
Lesão Pulmonar Aguda , Células Epiteliais Alveolares , Camundongos , Animais , Células Epiteliais Alveolares/metabolismo , Lipopolissacarídeos/efeitos adversos , Necroptose , Ácido Cítrico/efeitos adversos , Ácido Cítrico/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Membrana/metabolismo
16.
Int Immunopharmacol ; 101(Pt B): 108211, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34634687

RESUMO

Vasoactive intestinal peptide (VIP) is an intrapulmonary neuropeptide with multi-function, including anti-fibrosis. However, the exact role of VIP in pulmonary fibrosis has not been documented. Here, we investigated the protective effect of VIP against pulmonary fibrosis in a murine model induced by bleomycin (BLM). We found that the overexpression of VIP mediated by the adenoviral vector significantly attenuated the lung tissue destruction, reduced the deposition of the extracellular matrix, and inhibited the expression of alpha-smooth muscle actin (α-SMA) in the lungs of mice received BLM. Mechanismly, we found that VIP significantly suppressed the transforming growth factor-beta 1 (TGF-ß1)-induced epithelial-mesenchymal transition (EMT) and inhibited the matrix-producing ability of alveolar epithelial cells in vitro. Furthermore, we found that TGF-ß1 depressed the autophagy and an autophagy inductor partly reversed the TGF-ß1-induced EMT in alveolar epithelial cells. The impaired autophagy was also observed in the lungs of BLM-treated mice, which was restored by VIP treatment. And VIP treatment enhanced autophagy in TGF-ß1-stimulated alveolar epithelial cells, contributing to its anti-EMT effect. In summary, our data, for the first time, show that VIP attenuates BLM-induced pulmonary fibrosis in mice with anti-EMT effect through restoring autophagy in alveolar epithelial cells. This study provides a possibility that inhaled long-acting VIP may be an anti-fibrotic drug in the treatment of pulmonary fibrosis.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Bleomicina/toxicidade , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Peptídeo Intestinal Vasoativo/uso terapêutico , Células Epiteliais Alveolares/fisiologia , Animais , Antibióticos Antineoplásicos/uso terapêutico , Autofagia , Transição Epitelial-Mesenquimal/fisiologia , Camundongos , Vasodilatadores/uso terapêutico
17.
Int Immunopharmacol ; 101(Pt B): 108372, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34810128

RESUMO

Citrate has a prominent role as a substrate in cellular energy metabolism. Recently, citrate has been shown to drive inflammation. However, the role of citrate in lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains unclear. Here, we aimed to clarify whether extracellular citrate aggravated the LPS-induced ALI and the potential mechanism. Our findings demonstrated that extracellular citrate aggravated the pathological lung injury induced by LPS in mice, characterized by up-regulation of pro-inflammatory factors and over-activation of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome in the lungs. In vitro, we found that citrate treatment significantly augmented the expression of NLRP3 and pro-IL-1ß and enhanced the translocation of NF-κB/p65 into the nucleus. Furthermore, extracellular citrate plus adenosine-triphosphate (ATP) significantly increased the production of reactive oxygen species (ROS) in primary murine macrophages. Inhibiting the production of ROS with a ROS scavenger N-acetyl-L-cysteine (NAC) attenuated the activation of NLRP3 inflammasome. Altogether, we conclude that extracellular citrate may serve as a damage-associated molecular pattern (DAMP) and aggravates LPS-induced ALI by activating the NLRP3 inflammasome.


Assuntos
Alarminas/metabolismo , Ácido Cítrico/metabolismo , Lipopolissacarídeos/toxicidade , Lesão Pulmonar/induzido quimicamente , Ativação de Macrófagos/fisiologia , Macrófagos/efeitos dos fármacos , Trifosfato de Adenosina , Animais , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Distribuição Aleatória
18.
Int Immunopharmacol ; 89(Pt A): 107045, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33045564

RESUMO

NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome and triggering receptor expressed on myeloid cells-1 (TREM-1) are considered critical orchestrators of the inflammatory response in acute lung injury (ALI). However, few assumptions are based on the relationship between them. Here, we investigated the effect of NLRP3 inflammasome activation on the TREM-1 expression in lipopolysaccharide (LPS)-induced ALI and macrophages. We found that inhibition of the NLRP3 inflammasome reduced the TREM-1 expression and pathological lung injury in mice with ALI. Then, primary murine macrophages were used to dissect the underlying mechanistic events of the activation NLRP3 inflammasome involved in the TREM-1 expression. Our results demonstrated that the conditioned medium (CM) from NLRP3 inflammasome-activated-macrophages up-regulated the TREM-1 expression in macrophages, while this effect was reversed by an NLRP3 inflammasome inhibitor MCC950. Furthermore, neutralizing antibodies anti-IL-18 and anti-HMGB1 reduced the TREM-1 expression induced by NLRP3 inflammasome activation. Mechanistically, we found that CM from NLRP3 inflammasome-activated-macrophages increased the level of inhibitor κB kinase protein phosphorylation (p-IκBα) and reactive oxygen species (ROS) content, and promoted IκBα protein degradation in macrophages. While the inhibition of nuclear factor kappa-B (NF-κB) and scavenging ROS eliminated the up-regulation of TREM-1 induced by the NLRP3 inflammasome activation in macrophages. In summary, our study confers NLRP3 inflammasome as a new trigger of TREM-1 signing, which allows additional insight into the pathological of the inflammatory response in ALI.


Assuntos
Proteína HMGB1/metabolismo , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Macrófagos Peritoneais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Animais , Células Cultivadas , Furanos , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína HMGB1/genética , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Indenos , Lipopolissacarídeos/toxicidade , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pneumopatias/induzido quimicamente , Pneumopatias/metabolismo , Pneumopatias/patologia , Macrófagos Peritoneais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Sulfonamidas , Sulfonas/farmacologia , Receptor Gatilho 1 Expresso em Células Mieloides/genética , Regulação para Cima/efeitos dos fármacos
19.
Biomed Pharmacother ; 126: 109907, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32114358

RESUMO

Arachidonic acid can be metabolized to prostaglandins and epoxyeicosatrienoic acids (EETs) by cyclooxygenase-2 (COX-2) and cytochrome P450 (CYP), respectively. While protective EETs are degraded by soluble epoxide hydrolase (sEH) very fast. We have reported that dual inhibition of COX-2 and sEH with specific inhibitor PTUPB shows anti-pulmonary fibrosis and renal protection. However, the effect of PTUPB on cecal ligation and puncture (CLP)-induced sepsis remains unclear. The current study aimed to investigate the protective effects of PTUPB against CLP-induced sepsis in mice and the underlying mechanisms. We found that COX-2 expressions were increased, while CYPs expressions were decreased in the liver, lung, and kidney of mice undergone CLP. PTUPB treatment significantly improved the survival rate, reduced the clinical scores and systemic inflammatory response, alleviated liver and kidney dysfunction, and ameliorated the multiple-organ injury of the mice with sepsis. Besides, PTUPB treatment reduced the expression of hypoxia-inducible factor-1α in the liver, lung, and kidney of septic mice. Importantly, we found that PTUPB treatment suppressed the activation of NLRP3 inflammasome in the liver and lung of septic mice. Meanwhile, we found that PTUPB attenuated the oxidative stress, which contributed to the activation of NLRP3 inflammasome. Altogether, our data, for the first time, demonstrate that dual inhibition of COX-2 and sEH with PTUPB ameliorates the multiple organ dysfunction in septic mice.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Pirazóis/uso terapêutico , Sepse/tratamento farmacológico , Sulfonamidas/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Ciclo-Oxigenase 2/genética , Inibidores de Ciclo-Oxigenase/química , Inflamassomos/antagonistas & inibidores , Masculino , Malondialdeído , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Superóxido Dismutase
20.
FEBS J ; 287(8): 1666-1680, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31646730

RESUMO

Pulmonary fibrosis (PF) is a senescence-associated disease with poor prognosis. Currently, there is no effective therapeutic strategy for preventing and treating the disease process. Mounting evidence suggests that arachidonic acid (ARA) metabolites are involved in the pathogenesis of various fibrosis. However, the relationship between the metabolism of ARA and PF is still elusive. In this study, we observed a disorder in the cyclooxygenase-2/cytochrome P450 (COX-2/CYP) metabolism of ARA in the lungs of PF mice induced by bleomycin (BLM). Therefore, we aimed to explore the role of COX-2/CYP-derived ARA metabolic disorders in PF. PTUPB, a dual COX-2 and soluble epoxide hydrolase (sEH) inhibitor, was used to restore the balance of COX-2/CYP metabolism. sEH is an enzyme hydrolyzing epoxyeicosatrienoic acids derived from ARA by CYP. We found that PTUPB alleviated the pathological changes in lung tissue and collagen deposition, as well as reduced senescence marker molecules (p16Ink4a and p53-p21Waf1/Cip1 ) in the lungs of mice treated by BLM. In vitro, we found that PTUPB pretreatment remarkably reduced the expression of senescence-related molecules in the alveolar epithelial cells (AECs) induced by BLM. In conclusion, our study supports the notion that the COX-2/CYP-derived ARA metabolic disorders may be a potential therapeutic target for PF via inhibiting the cellular senescence in AECs.


Assuntos
Envelhecimento/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Fibrose Pulmonar/tratamento farmacológico , Células A549 , Animais , Ácido Araquidônico/metabolismo , Bleomicina , Senescência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/administração & dosagem , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Epóxido Hidrolases/metabolismo , Humanos , Injeções Subcutâneas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa