RESUMO
BACKGROUND: Gut microbiota (GM) have been implicated as important regulators of gastrointestinal symptom which is commonly occurred along with respiratory influenza A virus (IAV) infection, suggesting the involvement of the gut-to-lung axis in a host's response to IAV. IAV primarily destroys airway epithelium tight junctions (TJs) and consequently causes acute respiratory disease syndrome. It is known that GM and their metabolism produce an anti-influenza effect, but their role in IAV-induced airway epithelial integrity remains unknown. METHODS: A mouse model of IAV infection was established. GM were analyzed using 16S rRNA gene sequencing, and short-chain fatty acids (SCFAs) levels were measured. GM depletion and fecal microbiota transplantation (FMT) were conducted to validate the role of GM in IAV infection. A pair-feeding experiment was conducted to reveal whether IAV-induced GM dysbiosis is attributed to impaired food intake. Furthermore, human bronchial epithelial (HBE) cells were cocultured with IAV in the presence or absence of acetate. TJs function was analyzed by paracellular permeability and transepithelial electronic resistance (TEER). The mechanism of how acetate affects TJs integrity was evaluated in HBE cells transfected with G protein-coupled receptor 43 (GPR43) short hairpin RNA (shRNA). RESULTS: IAV-infected mice exhibited lower relative abundance of acetate-producing bacteria (Bacteroides, Bifidobacterium, and Akkermansia) and decreased acetate levels in gut and serum. These changes were partly caused by a decrease in food consumption (due to anorexia). GM depletion exacerbated and FMT restored IAV-induced lung inflammatory injury. IAV infection suppressed expressions of TJs (occludin, ZO-1) leading to disrupted airway epithelial barrier function as evidenced by decreased TEER and increased permeability. Acetate pretreatment activated GPR43, partially restored IAV-induced airway epithelial barrier function, and reduced inflammatory cytokines levels (TNF-α, IL-6, and IL-1ß). Such protective effects of acetate were absent in HBE cells transfected with GPR43 shRNA. Acetate and GPR43 improved TJs in an AMP-activated protein kinase (AMPK)-dependent manner. CONCLUSION: Collectively, our results demonstrated that GM protected airway TJs by modulating GPR43-AMPK signaling in IAV-induced lung injury. Therefore, improving GM dysbiosis may be a potential therapeutic target for patients with IAV infection.
Assuntos
Acetatos , Microbioma Gastrointestinal , Lesão Pulmonar , Infecções por Orthomyxoviridae , Junções Íntimas , Animais , Junções Íntimas/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Acetatos/metabolismo , Humanos , Infecções por Orthomyxoviridae/complicações , Camundongos Endogâmicos C57BL , Vírus da Influenza A , Transplante de Microbiota Fecal , Receptores Acoplados a Proteínas G/metabolismo , Camundongos , Células Epiteliais/metabolismo , Disbiose , Ácidos Graxos Voláteis/metabolismoRESUMO
BACKGROUND: Influenza A viruses (IAV) are extremely common respiratory viruses for the acute exacerbation of chronic obstructive pulmonary disease (AECOPD), in which IAV infection may further evoke abnormal macrophage polarization, amplify cytokine storms. Melatonin exerts potential effects of anti-inflammation and anti-IAV infection, while its effects on IAV infection-induced AECOPD are poorly understood. METHODS: COPD mice models were established through cigarette smoke exposure for consecutive 24 weeks, evaluated by the detection of lung function. AECOPD mice models were established through the intratracheal atomization of influenza A/H3N2 stocks in COPD mice, and were injected intraperitoneally with melatonin (Mel). Then, The polarization of alveolar macrophages (AMs) was assayed by flow cytometry of bronchoalveolar lavage (BAL) cells. In vitro, the effects of melatonin on macrophage polarization were analyzed in IAV-infected Cigarette smoking extract (CSE)-stimulated Raw264.7 macrophages. Moreover, the roles of the melatonin receptors (MTs) in regulating macrophage polarization and apoptosis were determined using MTs antagonist luzindole. RESULTS: The present results demonstrated that IAV/H3N2 infection deteriorated lung function (reduced FEV20,50/FVC), exacerbated lung damages in COPD mice with higher dual polarization of AMs. Melatonin therapy improved airflow limitation and lung damages of AECOPD mice by decreasing IAV nucleoprotein (IAV-NP) protein levels and the M1 polarization of pulmonary macrophages. Furthermore, in CSE-stimulated Raw264.7 cells, IAV infection further promoted the dual polarization of macrophages accompanied with decreased MT1 expression. Melatonin decreased STAT1 phosphorylation, the levels of M1 markers and IAV-NP via MTs reflected by the addition of luzindole. Recombinant IL-1ß attenuated the inhibitory effects of melatonin on IAV infection and STAT1-driven M1 polarization, while its converting enzyme inhibitor VX765 potentiated the inhibitory effects of melatonin on them. Moreover, melatonin inhibited IAV infection-induced apoptosis by suppressing IL-1ß/STAT1 signaling via MTs. CONCLUSIONS: These findings suggested that melatonin inhibited IAV infection, improved lung function and lung damages of AECOPD via suppressing IL-1ß/STAT1-driven macrophage M1 polarization and apoptosis in a MTs-dependent manner. Melatonin may be considered as a potential therapeutic agent for influenza virus infection-induced AECOPD.
Assuntos
Apoptose , Vírus da Influenza A Subtipo H3N2 , Melatonina , Doença Pulmonar Obstrutiva Crônica , Animais , Melatonina/farmacologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/virologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Camundongos , Apoptose/efeitos dos fármacos , Células RAW 264.7 , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/imunologia , Camundongos Endogâmicos C57BL , Masculino , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Progressão da Doença , Polaridade Celular/efeitos dos fármacos , Modelos Animais de Doenças , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologiaRESUMO
Although rapid progression and a poor prognosis in influenza A virus (IAV) infection-induced acute exacerbation of chronic obstructive pulmonary disease (AECOPD) are frequently associated with metabolic energy disorders, the underlying mechanisms and rescue strategies remain unknown. We herein demonstrated that the level of resting energy expenditure increased significantly in IAV-induced AECOPD patients and that cellular energy exhaustion emerged earlier and more significantly in IAV-infected primary COPD bronchial epithelial (pDHBE) cells. The differentially expressed genes were enriched in the oxidative phosphorylation (OXPHOS) pathway; additionally, we consistently uncovered much earlier ATP exhaustion, more severe mitochondrial structural destruction and dysfunction, and OXPHOS impairment in IAV-inoculated pDHBE cells, and these changes were rescued by melatonin. The level of OMA1-dependent cleavage of OPA1 in the mitochondrial inner membrane and the shift in energy metabolism from OXPHOS to glycolysis were significantly increased in IAV-infected pDHBE cells; however, these changes were rescued by OMA1-siRNA or melatonin further treatment. Collectively, our data revealed that melatonin rescued IAV-induced cellular energy exhaustion via OMA1-OPA1-S to improve the clinical prognosis in COPD. This treatment may serve as a potential therapeutic agent for patients in which AECOPD is induced by IAV.
Assuntos
Metabolismo Energético , GTP Fosfo-Hidrolases , Vírus da Influenza A , Melatonina , Doença Pulmonar Obstrutiva Crônica , Humanos , Metabolismo Energético/efeitos dos fármacos , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , Vírus da Influenza A/efeitos dos fármacos , Influenza Humana/metabolismo , Influenza Humana/tratamento farmacológico , Melatonina/farmacologia , Metaloendopeptidases , Fosforilação Oxidativa/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológicoRESUMO
BACKGROUND: The gefitinib resistance mechanism in non-small cell lung cancer (NSCLC) remains unclear, albeit exosomal circular RNA (circRNA) is known to possibly play a vital role in it. METHODS: We employed high-throughput sequencing techniques to detect the expressions of exosomal circRNA both in gefitinib-resistant and gefitinib-sensitive cells in this study. The circKIF20B expression was determined in serum exosomes and tissues of patients by qRT-PCR. The structure, stability, and intracellular localization of circKIF20B were verified by Sanger sequencing, Ribonuclease R (RNase R)/actinomycin D (ACTD) treatments, and Fluorescence in situ hybridization (FISH). The functions of circKIF20B were investigated by 5-Ethynyl-20-deoxyuridine (EdU), flow cytometry, Cell Counting Kit-8 (CCK-8), oxygen consumption rate (OCR), and xenograft model. Co-culture experiments were performed to explore the potential ability of exosomal circKIF20B in treating gefitinib resistance. The downstream targets of circKIF20B were determined by luciferase assay, RNA pulldown, and RNA immunoprecipitation (RIP). RESULTS: We found that circKIF20B was poorly expressed in the serum exosomes of gefitinib-resistant patients (n = 24) and the tumor tissues of patients with NSCLC (n = 85). CircKIF20B was negatively correlated with tumor size and tumor stage. Decreasing circKIF20B was found to promote gefitinib resistance by accelerating the cell cycle, inhibiting apoptosis, and enhancing mitochondrial oxidative phosphorylation (OXPHOS), whereas increasing circKIF20B was found to restore gefitinib sensitivity. Mechanistically, circKIF20B is bound to miR-615-3p for regulating the MEF2A and then altering the cell cycle, apoptosis, and mitochondrial OXPHOS. Overexpressing circKIF20B parental cells can restore sensitivity to gefitinib in the recipient cells by upregulating the exosomal circKIF20B expression. CONCLUSIONS: This study revealed a novel mechanism of circKIF20B/miR-615-3p/MEF2A signaling axis involving progression of gefitinib resistance in NSCLC. Exosomal circKIF20B is expected to be an easily accessible and alternative liquid biopsy candidate and potential therapeutic target in gefitinib-resistant NSCLC. The schematic diagram of mechanism in this study. Exosomal circKIF20B inhibits gefitinib resistance and cell proliferation by arresting the cell cycle, promoting apoptosis, and reducing OXPHOS via circKIF20B/miR-615-3p/MEF2A axis in NSCLC.
RESUMO
Abscisic acid (ABA), a well-known natural phytohormone reportedly exerts anti-inflammatory and anti-oxidative properties in diabetes and colitis. However, the efficacy of ABA against allergic airway inflammation and the underlying mechanism remain unknown. Herein, an OVA-induced murine allergic airway inflammation model was established and treated with ABA in the presence or absence of PPAR-γ antagonist GW9662. The results showed that ABA effectively stunted the development of airway inflammation, and concordantly downregulated OVA-induced activation of NLRP3 inflammasome, suppressed oxidative stress and decreased the expression of mitochondrial fusion/fission markers including Optic Atrophy 1 (OPA1), Mitofusion 2 (Mfn2), dynamin-related protein 1 (DRP1) and Fission 1 (Fis1). Moreover, ABA treatment further increased OVA-induced expression of PPAR-γ, while GW9662 abrogated the inhibitory effect of ABA on allergic airway inflammation as well as on the activation of NLRP3 inflammasome and oxidative stress. Consistently, ABA inhibited the activation of NLRP3 inflammasome, suppressed oxidative stress and mitochondrial fusion/fission in LPS-stimulated Raw264.7 cells via PPAR-γ. Collectively, ABA ameliorates OVA-induced allergic airway inflammation in a PPAR-γ dependent manner, and such effect of ABA may be associated with its inhibitory effect on NLRP3 inflammasome and oxidative stress. Our results suggest the potential of ABA or ABA-rich food in protecting against asthma.
Assuntos
Ácido Abscísico/farmacologia , Inflamassomos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Animais , Asma/metabolismo , Feminino , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células RAW 264.7 , Sistema Respiratório/metabolismoRESUMO
BACKGROUND: Airway remodeling is a major pathological characteristic of chronic obstructive pulmonary disease (COPD), and has been shown to be associated with oxidative stress. Sestrin2 has recently drawn attention as an important antioxidant protein. However, the underlying correlation between sestrin2 and airway remodeling in COPD has yet to be clarified. METHODS: A total of 124 subjects were enrolled in this study, including 62 control subjects and 62 COPD patients. The pathological changes in airway tissues were assessed by different staining methods. The expression of sestrin2 and matrix metalloproteinase 9 (MMP9) in airway tissues was monitored by immunohistochemistry. Enzyme-linked immunosorbent assays (ELISAs) were used to detect the serum concentrations of sestrin2 and MMP9. The airway parameters on computed tomography (CT) from all participants were measured for evaluating airway remodeling. The relationship between serum sestrin2 and MMP9 concentration and airway parameters in chest CT was also analyzed. RESULTS: In patients with COPD, staining of airway structures showed distinct pathological changes of remodeling, including cilia cluttered, subepithelial fibrosis, and reticular basement membrane (Rbm) fragmentation. Compared with control subjects, the expression of sestrin2 and MMP9 was significantly increased in both human airway tissues and serum. Typical imaging characteristics of airway remodeling and increased airway parameters were also found by chest CT. Additionally, serum sestrin2 concentration was positively correlated with serum MMP9 concentration and airway parameters in chest CT. CONCLUSION: Increased expression of sestrin2 is related to airway remodeling in COPD. We demonstrated for the first time that sestrin2 may be a novel biomarker for airway remodeling in patients with COPD.
Assuntos
Remodelação das Vias Aéreas , Proteínas Nucleares/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Idoso , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Tomografia Computadorizada por Raios XRESUMO
To observe the functions of Gualou Xiebai Banxia decoctionï¼GXBDï¼ on regulating lipid metabolism, anti-oxidation, and interposing ox-LDL/Lox-1 pathway, and to explore its anti-atherosclerosis (AS) mechanisms. AS models were established by using 42 Apo-E-/- male mice with high fat diet. AS model mice were randomly divided into the model group, simvastatin group, and GXBD high and low dose groups. C57BL/6J male mice were used as the normal control group, n=10 and the treatment lasted for 8 weeks. The levels of TC, TG, LDL-C, HDL-C, SOD, MDA, GSH-px, and ox-LDL in blood serum were tested 24 h after the last administration. The changes of aortic tissues structure were observed by HE staining; the expression levels of Lox-1 protein and the expression levels of mRNA were detected by Western blot and PCR respectively.Results showed that the blood lipid levels and MDA, ox-LDL levels in blood serum of model group were significantly higher than those in the normal control group, but SOD, GSH-px levels were significantly lower than those in the normal control group, and the Lox-1 protein and mRNA expression levels were also significantly higher than those in the control group(P<0.05), namely aortic atherosclerosis lesions were obvious in model group.The levels of blood lipid and MDA, ox-LDL of GXBD high and low dose groups and simvastatin group were significantly lower than those in model group, while SOD, GSH-px levels were significantly higher than those in model group, and Lox-1 protein and mRNA expression levels were significantly lower than those in model group(P<0.05), namely the aortic atherosclerosis lesions were significantly relieved. The above results indicated that GXBD was capable of modulating blood lipid, anti-oxidation, and inhibiting the expression of Lox-1, and interposing ox-LDL/Lox-1 pathway in the AS model Apo-E-/- mice, which may be one of the mechanisms of anti-atherosclerosis.
Assuntos
Aterosclerose/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Lipídeos/sangue , Lipoproteínas LDL/sangue , Estresse Oxidativo/efeitos dos fármacos , Receptores Depuradores Classe E/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoERESUMO
BACKGROUND: Chronic obstructive pulmonary disease (COPD) exacerbations are accompanied with increased systemic inflammation, which accelerate the pulmonary function injury and impair the quality of life. Prompt and effective treatments for COPD exacerbations slow down the disease progression, but an objective instrument to assess the efficacy of the treatments following COPD exacerbations is lacking nowadays. The COPD Assessment Test (CAT) is an 8-item questionnaire designed to assess and quantify health status and symptom burden in COPD patients. We hypothesize that the change in CAT score is related to the treatment response following COPD exacerbations. METHODS: 78 inpatients with clinician-diagnosed acute exacerbation of COPD (AECOPD) completed the CAT, St George's Respiratory Questionnaire (SGRQ) and modified Medical Research Council (mMRC) Dyspnea Scale both at exacerbation and the 7th day of therapy, and a subgroup of 39 patients performed the pulmonary function test. Concentrations of serum C-reactive protein (CRP) and plasma fibrinogen were assayed at the same time. Correlations between the CAT and other measurements were examined. RESULTS: After 7 days' therapy, the CAT and SGRQ scores, mMRC grades, as well as the concentrations of CRP and fibrinogen all decreased significantly (P < 0.001). Meanwhile, the FEV1% predicted had a significant improvement (P < 0.001). The CAT scores were significantly correlated with concurrent concentrations of CRP and fibrinogen, SGRQ scores, FEV1% predicted and mMRC grades (P < 0.05). The change in CAT score was positively correlated with the change of CRP (r = 0.286, P < 0.05), SGRQ score (r = 0.725, P < 0.001) and mMRC grades (r = 0.593, P < 0.001), but not with fibrinogen (r = 0.137, P > 0.05) or FEV1% predicted (r = -0.101, P > 0.05). No relationship was found between the changes of SGRQ score and CRP and fibrinogen (P>0.05). CONCLUSIONS: The CAT is associate with the changes of systemic inflammation following COPD exacerbations. Moreover, the CAT is responsive to the treatments, similar to other measures such as SGRQ, mMRC dyspnea scale and pulmonary function. Therefore, the CAT is a potentially useful instrument to assess the efficacy of treatments following COPD exacerbations.
Assuntos
Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/terapia , Idoso , China , Progressão da Doença , Feminino , Humanos , Masculino , Testes de Função RespiratóriaRESUMO
PURPOSE: Driver mutations inform lung adenocarcinoma (LUAD) targeted therapy. Association of histopathological attributes and molecular profiles facilitates clinically viable testing platforms. We assessed correlations between LUAD clinicopathological features, mutational landscapes, and two grading systems among Chinese cases. METHODS: 79 Chinese LUAD patients undergoing resection were subjected to targeted sequencing. 68 were invasive nonmucinous adenocarcinoma (INMA), graded via: predominant histologic pattern-based grading system (P-GS) or novel IASLC grading system (I-GS). Driver mutation distributions were appraised and correlated with clinical and pathological data. RESULTS: Compared to INMA, non-INMA exhibited smaller, well-differentiated tumors with higher mucin content. INMA grade correlated with size, lymph invasion (P-GS), and driver/EGFR mutations. Mutational spectra varied markedly between grades, with EGFR p.L858R and exon 19 deletion mutations predominating in lower grades; while high-grade P-GS tumors often harbored EGFR copy number variants and complex alterations alongside wild-type cases. I-GS upgrade of P-GS grade 2 to grade 3 was underpinned by ≥20â¯% high-grade regions bearing p.L858R or ALK fusions. Both systems defined tumors of distinctive phenotypic attributes and molecular genotypes. CONCLUSIONS: INMA represent larger, mucin-poor, molecularly heterogeneous LUAD with divergent grade-specific mutation profiles. Stronger predictor of clinicopathological attributes and driver mutations, P-GS stratification offers greater accuracy for molecular testing. A small panel encompassing EGFR and ALK captures the majority of P-GS grade 1/2 mutations whereas expanded panels are optimal for grade 3.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Mutação , Gradação de Tumores , Humanos , Masculino , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/cirurgia , Feminino , Pessoa de Meia-Idade , Idoso , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/cirurgia , Adulto , Idoso de 80 Anos ou mais , China , Receptores ErbB/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , População do Leste AsiáticoRESUMO
PURPOSE: Asthma can not be eradicated till now and its control primarily relies on the application of corticosteroids. Recently, glycolytic reprogramming has been reportedly contributed to asthma, this study aimed to reveal whether the effect of corticosteroids on asthma control is related to their regulation of glycolysis and glycolysis-dependent protein lactylation. METHODS: Ovalbumin (OVA) aeroallergen was used to challenge mice and stimulate human macrophage cell line THP-1 following dexamethasone (DEX) treatment. Airway hyperresponsiveness, airway inflammation, the expressions of key glycolytic enzymes and pyroptosis markers, the level of lactic acid, real-time glycolysis and oxidative phosphorylation (OXPHOS), and protein lactylation were analyzed. RESULTS: DEX significantly attenuated OVA-induced eosinophilic airway inflammation, including airway hyperresponsiveness, leukocyte infiltration, goblet cell hyperplasia, Th2 cytokines production and pyroptosis markers expression. Meanwhile, OVA-induced Hif-1α-glycolysis axis was substantially downregulated by DEX, which resulted in low level of lactic acid. Besides, key glycolytic enzymes in the lungs of asthmatic mice were notably co-localized with F4/80-positive macrophages, indicating metabolic shift to glycolysis in lung macrophages during asthma. This was confirmed in OVA-stimulated THP-1 cells that DEX treatment resulted in reductions in pyroptosis, glycolysis and lactic acid level. Finally, protein lactylation was found significantly increased in the lungs of asthmatic mice and OVA-stimulated THP-1 cells, which were both inhibited by DEX. CONCLUSION: Our present study revealed that the effect of DEX on asthma control was associated with its suppressing of Hif-1α-glycolysis-lactateaxis and subsequent protein lactylation, which may open new avenues for the therapy of eosinophilic asthma.
Assuntos
Asma , Ácido Láctico , Humanos , Animais , Camundongos , Ácido Láctico/metabolismo , Ovalbumina/metabolismo , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Asma/tratamento farmacológico , Asma/induzido quimicamente , Pulmão , Inflamação , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Corticosteroides/efeitos adversos , Glicólise , Camundongos Endogâmicos BALB C , Modelos Animais de DoençasRESUMO
Asthma demonstrates a strong circadian rhythm with disrupted molecular clock. Melatonin which can directly regulate circadian rhythm has been reported to alleviate asthma, but whether this effect is related to its regulation on circadian clock has not yet been known. Here, female C57BL/6 mice were challenged with ovalbumin (OVA) to establish allergic airway inflammation, and were treated with melatonin or Luzindole to investigate whether the expressions of circadian clock proteins were changed in response to OVA and were affected by exogenous/endogenous melatonin. Airway inflammation, mucus secretion, protein expressions of circadian proteins (Bmal1, Per1, Clock, Timeless, Cry1 and Cry2), melatonin biosynthetase (ASMT, AANAT) and melatonin receptor (Mel-1A/B-R) were analyzed accordingly. The results showed that in the successfully established allergic airway inflammation model, inflammatory cells infiltration, expressions of circadian clock proteins in the lung tissues of OVA-challenged mice were all notably up-regulated as compared to that of the vehicle mice. Meanwhile, the protein expression of ASMT and the level of melatonin in the lung tissues were reduced in allergic mice, while the expression of melatonin receptor Mel-1A/B-R was markedly increased. After addition of exogenous melatonin, the OVA-induced airway inflammation was pronouncedly ameliorated, while simultaneously the OVA-induced expressions of Per1 and Clock were further increased. However, a melatonin receptor antagonist Luzindole further augmented the OVA-induced airway inflammation, accompanied with remarkably decreased expressions of Per1, Bmal1, Cry1 and Cry2 but notably increased expression of Timeless. Collectively, our results demonstrated that the expression of circadian clock proteins was increased in the lungs during allergic airway inflammation, and Per1 was a clock protein that can be regulated by both exogenous and endogenous melatonin, suggesting Per1 may be an important potential circadian clock target for melatonin as a negative regulatory factor against Th2-type airway inflammation.
RESUMO
Background: Acute respiratory tract infections (ARTIs) are the most common cause of morbidity and mortality worldwide, with most people experiencing at least one episode per year. Current treatment options are mainly symptomatic therapy. Antivirals, antibiotics, and glucocorticoids are of limited benefit for most infections. Traditional Chinese medicine has shown potential benefits in the treatment of ARTIs. Objective: The objective of this study was to determine the efficacy, effectiveness, and safety of Phragmites communis Trin. (P. communis, a synonym of Phragmites australis (Cav.) Trin. ex Steud) as monotherapy or as part of an herb mixture for ARTIs. Method: Eight databases and two clinical trial registries were searched from inception to 8 February 2023 for randomized controlled trials (RCTs) evaluating any preparation involving P. communis without language restrictions. The Risk of Bias Tool 2.0 was used to assess the risk of bias of the included trials. RevMan 5.3 software was used for data analyses with effects estimated as risk ratios (RRs), mean differences (MDs), or standardized mean differences (SMDs) with 95% confidence intervals (CIs). The online GRADEpro tool was used to assess the certainty of the evidence, if available. Results: Forty-two RCTs involving 6,879 patients with ARTIs were included, with all trials investigating P. communis as part of an herbal mixture. Of the included trials, the majority (38/42) were considered high risk. Compared to the placebo, P. communis preparations improved the cure rate [RR = 1.60, 95% CI (1.13, 2.26)] and fever clearance time [MD = -2.73 h, 95% CI (-4.85, -0.61)]. Compared to usual care alone, P. communis preparations also significantly improved the cure rate [RR = 1.57, 95% CI (1.36, 1.81)] and fever clearance time [SMD = -1.24, 95% CI (-2.37, -0.11)]. P. communis preparations plus usual care compared to usual care alone increased the cure rate [RR = 1.55, 95% CI (1.35, 1.78)], shortened the fever clearance time [MD = -19.31 h, 95% CI (-33.35, -5.27)], and improved FEV1 [ MD = 0.19 L, 95% CI (0.13, 0.26)] and FVC [ MD = 0.16 L, 95% CI (0.03, 0.28)]. Conclusion: Low- or very low-certainty evidence suggests that P. communis preparations may improve the cure rate of ARTIs, shorten the fever clearance time in febrile patients, and improve the pulmonary function of patients with acute exacerbation of chronic obstructive pulmonary disease or chronic bronchitis. However, these findings are inconclusive and need to be confirmed in rigorously designed trials. Systematic review registration: PROSPERO, identifier CRD42021239936.
RESUMO
BACKGROUND: Cognitive impairment has been found in chronic obstructive pulmonary disease (COPD) patients. However, the structural alteration of the brain and underlying mechanisms are poorly understood. METHODS: Thirty-seven mild-to-moderate COPD patients, forty-eight severe COPD patients, and thirty-one control subjects were recruited for cognitive test and neuroimaging studies. Serum levels of S100B,pulmonary function and arterial blood gas levels were also evaluated in each subject. RESULTS: The hippocampal volume was significantly smaller in COPD patients compared to the control group. It is positively correlated with a mini mental state examination (MMSE) score, SaO2 in mild-to-moderate COPD patients, the levels of PaO2 in both mild-to-moderate and severe COPD patients. Higher S100B concentrations were observed in mild-to-moderate COPD patients, while the highest S100B level was found in severe COPD patients when compared to the control subjects. S100B levels are negatively associated with MMSE in both mild-to-moderate and severe COPD patients and also negatively associated with the hippocampal volume in the total COPD patients. CONCLUSIONS: Hippocampal atrophy based on quantitative assessment by magnetic resonance imaging does occur in COPD patients, which may be associated with cognitive dysfunction and the most prevalent mechanism accountable for hippocampal atrophy is chronic hypoxemia in COPD. Higher serum S100B levels may be peripheral biochemical marker for cognitive impairment in COPD.
Assuntos
Transtornos Cognitivos/etiologia , Hipocampo/patologia , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/patologia , Índice de Gravidade de Doença , Idoso , Atrofia/complicações , Atrofia/patologia , Biomarcadores/sangue , Gasometria , Estudos de Casos e Controles , Transtornos Cognitivos/epidemiologia , Feminino , Humanos , Incidência , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/sangue , Testes de Função Respiratória , Subunidade beta da Proteína Ligante de Cálcio S100/sangueRESUMO
BACKGROUND: Chronic obstructive pulmonary disease (COPD) is understood to be a complex multicomponent disorder. The impairment of cognition is lasting and profound. However, the pattern of the cognitive decline and potentially adverse factors are poorly understood. OBJECTIVES: To evaluate the cognitive performances and the relevant factors in COPD patients and to investigate the relationship between cognition deficits and the classification of severity of the disease. METHODS: Twenty-seven mild-to-moderate COPD patients, 35 severe COPD patients and 27 control subjects were recruited. Cognitive states were investigated by the Mini-Mental State Examination (MMSE). Pulmonary function, arterial blood gas and serum clusterin level were evaluated in each subject. RESULTS: Lower MMSE score and higher serum clusterin concentration were observed in mild-to-moderate COPD patients, while the lowest MMSE score and the highest serum clusterin level were found in severe COPD patients when compared with control subjects. MMSE score is positively correlated with arterial oxygen tension and is inversely associated with serum clusterin level in both mild-to-moderate and severe COPD patients. Furthermore, MMSE scores and serum clusterin concentrations were correlated with forced expiratory volume in 1 s in severe COPD patients. CONCLUSION: Cognitive impairment was found in COPD patients. It is associated with the classification of disease severity, hypoxemia and serum clusterin level. An increased serum clusterin level may be a relevant peripheral biomarker of cognitive dysfunction in COPD patients.
Assuntos
Transtornos Cognitivos/complicações , Doença Pulmonar Obstrutiva Crônica/complicações , Idoso , Estudos de Casos e Controles , Clusterina/sangue , Transtornos Cognitivos/sangue , Transtornos Cognitivos/diagnóstico , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Testes Neuropsicológicos , Oxigênio/sangue , Índice de Gravidade de DoençaRESUMO
Macrophages are highly heterogeneous and plastic immune cells that play an important role in the fight against pathogenic microorganisms and tumor cells. After different stimuli, macrophages can polarize to the M1 phenotype to show a pro-inflammatory effect and the M2 phenotype to show an anti-inflammatory effect. The balance of macrophage polarization is highly correlated with disease progression, and therapeutic approaches to reprogram macrophages by targeting macrophage polarization are feasible. There are a large number of exosomes in tissue cells, which can transmit information between cells. In particular, microRNAs (miRNAs) in the exosomes can regulate the polarization of macrophages and further affect the progression of various diseases. At the same time, exosomes are also effective "drug" carriers, laying the foundation for the clinical application of exosomes. This review describes some pathways involved in M1/M2 macrophage polarization and the effects of miRNA carried by exosomes from different sources on the polarization of macrophages. Finally, the application prospects and challenges of exosomes/exosomal miRNAs in clinical treatment are also discussed.
Assuntos
Exossomos , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Macrófagos , Linhagem Celular Tumoral , Fenótipo , Exossomos/metabolismoRESUMO
Background: As multiple mutations of SARS-Cov-2 exist, there are now many viral variants with regional differences in distribution. The clinical characteristics of patients hospitalized with the virus also vary significantly, with those of the Omicron variants being strikingly different from those of the earliest wild-type variant. However, comprehensive data on this subject is lacking. It is therefore crucial to explore these differences to develop better clinical strategies for the management of COVID-19. Methods: A total of 554 confirmed COVID-19 cases in China were clinically classified as mild, moderate, severe, and critical according to their diagnoses and treatment plans. We compared the demographics and clinical characteristics of patients infected with the Omicron vs wild-type strains, between severe and non-severe cases. Bacterial co-infections with SARS-CoV-2 and correlation between inflammatory factors and T cells were analyzed. Results: Compared to the wild-type cases, the severe Omicron cases were older (median age 48.36 vs 73.24), and had more upper-respiratory symptoms and comorbidities. Decreased leukocyte counts were less pronounced, although more instances of significantly decreased CD4+ and CD8+ T-cell counts, elevated infection-related biomarkers (eg procalcitonin and C-reactive protein), and abnormal coagulation factors (including increased D-dimer and fibrinogen levels) were detected in the severe Omicron cases. The mean length of hospital stay was significantly shorter in the severe Omicron cases. CD4+ and CD8+ T cell numbers were negatively correlated with neutrophil-to-lymphocyte ratios, as well as serum interleukin-6, procalcitonin, and C-reactive protein levels. Conclusion: There were significant clinical differences between patients hospitalized with severe cases of Omicron- variant COVID-19 vs wild-type. The Omicron cases tended to be older and had more upper respiratory tract symptoms, comorbidities and bacterial co-infections. Elevated levels of inflammatory cytokines with T-cell depletion correlated with poor disease progression and prognosis. We hope these data provide a theoretical basis for future integrated prevention and control plans for COVID-19.
RESUMO
Owing to its biotoxicity and inductive effect on photochemical pollution, atmospheric peroxyacetyl nitrate (PAN), which is a typical product of atmospheric photochemical reactions, has attracted much research attention. However, to the best of our knowledge, few comprehensive studies have been conducted on the seasonal variation and key influencing factors of PAN concentrations in southern China. In this study, PAN, ozone (O3), precursor volatile organic compound (VOC), and other pollutant concentrations were measured online for 1 year (from October 2021 to September 2022) in Shenzhen, a megacity in the Greater Bay Area of China. The average concentrations of PAN and peroxypropionyl nitrate (PPN) were 0.54 and 0.08 parts per billion (ppb), and the maximum hourly concentrations reached 10.32 and 1.01 ppb, respectively. The results of the generalized additive model (GAM) showed that the atmospheric oxidation capacity and precursor concentration were the most important factors affecting the PAN concentration. According to the steady-state model, the average cumulative contribution to the peroxyacetyl (PA) radical formation rate by six major carbonyl compounds was calculated at 4.2 × 106 molecules cm-3 s-1, and acetaldehyde (63.0 %) and acetone (13.9 %) contributed the most. Furthermore, the photochemical-age-based parameterization method was used to analyze the source contributions of carbonyl compounds and PA radicals. The results showed that although the primary anthropogenic (40.2 %), biogenic (27.8 %), and secondary anthropogenic (16.4 %) sources were the most important contributors of PA radicals, the biogenic and secondary anthropogenic source contributions both increased considerably in summer, and the cumulative proportion of both sources reached ~70 % in July. In addition, a comparison of PAN pollution processes in different seasons revealed that in summer and winter, the PAN concentration was predominantly limited by precursors and meteorological parameters, such as light intensity, respectively.
Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Estações do Ano , Poluentes Atmosféricos/análise , China , Ozônio/análise , Compostos Orgânicos Voláteis/análise , Monitoramento AmbientalRESUMO
Raf kinase inhibitor protein (RKIP) is an inflammationinhibiting mediator that is involved in several diseases; however, the potential mechanism of action of RKIP on the inflammatory response induced by influenza A virus (IAV) remains unclear. The present study aimed to investigate whether RKIP regulated the inflammatory response via the ERK/MAPK pathway. The present study detected the expression levels of RKIP and alterations in the inflammatory response in human normal bronchial epithelial BEAS2B cells, diseased human bronchial epithelial cells and primary human bronchial epithelial cells infected with IAV. Cells were treated with locostatin to inhibit the expression of RKIP. RKIP was overexpressed by lentivirus transduction and the small molecule inhibitor SCH772984 was applied to specifically inhibit activation of the ERK/MAPK pathway. In addition, C57BL/6 mice were infected with IAV to further confirm the role of RKIP in regulation of the inflammatory response via ERK/MAPK in vivo. Western blotting, reverse transcriptionquantitative PCR, ELISA, 5ethynyl-2'deoxyuridine assay, immunofluorescence staining, Cell Counting Kit8, cell cycle assay, hematoxylin and eosin staining, and immunohistochemistry were used to detect all of the changes. Notably, RKIP attenuated the inflammatory response that was triggered by IAV infection in airway epithelial cells, which was characterized by augmented inflammatory cytokines and cell cycle arrest. Furthermore, the ERK/MAPK pathway was revealed to be activated by IAV infection and downregulation of RKIP aggravated the airway inflammatory response. By contrast, overexpression of RKIP effectively ameliorated the airway inflammatory response induced by IAV. These findings demonstrated that RKIP may serve a protective role in airway epithelial cells by combating inflammation via the ERK/MAPK pathway. Collectively, the present findings suggested that RKIP may negatively regulate airway inflammation and thus may constitute a promising therapeutic strategy for airway inflammatoryrelated diseases that are induced by IAV.
Assuntos
Vírus da Influenza A , Proteína de Ligação a Fosfatidiletanolamina , Animais , Humanos , Camundongos , Inflamação , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteína de Ligação a Fosfatidiletanolamina/metabolismoRESUMO
Itaconate has emerged as a novel anti-inflammatory and antioxidative endogenous metabolite, yet its role in allergic airway inflammation (AAI) and the underlying mechanism remains elusive. Here, the itaconate level in the lung was assessed by High Performance Liquid Chromatography (HPLC), and the effects of the Irg1/itaconate pathway on AAI and alveolar macrophage (AM) immune responses were evaluated using an ovalbumin (OVA)-induced AAI model established by wild type (WT) and Irg1-/- mice, while the mechanism of this process was investigated by metabolomics analysis, mitochondrial/cytosolic protein fractionation and transmission electron microscopy in the lung tissues. The results demonstrated that the Irg1 mRNA/protein expression and itaconate production in the lung were significantly induced by OVA. Itaconate ameliorated while Irg1 deficiency augmented AAI, and this may be attributed to the fact that itaconate suppressed mitochondrial events such as NLRP3 inflammasome activation, oxidative stress and metabolic dysfunction. Furthermore, we identified that the Irg1/itaconate pathway impacted the NLRP3 inflammasome activation and oxidative stress in AMs. Collectively, our findings provide evidence for the first time, supporting the conclusion that in the allergic lung, the itaconate level is markedly increased, which directly regulates AMs' immune responses. We therefore propose that the Irg1/itaconate pathway in AMs is a potential anti-inflammatory and anti-oxidative therapeutic target for AAI.
RESUMO
As a pattern recognition receptor which activates innate immune system, toll-like receptor 2 (TLR2) has been reportedly mediates allergic airway inflammation (AAI), yet the underlying mechanism remains elusive. Here, in a murine AAI model, TLR2-/- mice showed decreased airway inflammation, pyroptosis and oxidative stress. RNA-sequencing revealed that allergen-induced hif1 signaling pathway and glycolysis were significantly downregulated when TLR2 was deficient, which were confirmed by lung protein immunoblots. Glycolysis inhibitor 2-Deoxy-d-glucose (2-DG) inhibited allergen-induced airway inflammation, pyroptosis, oxidative stress and glycolysis in wild type (WT) mice, while hif1α stabilizer ethyl 3,4-dihydroxybenzoate (EDHB) restored theses allergen-induced changes in TLR2-/- mice, indicating TLR2-hif1α-mediated glycolysis contributes to pyroptosis and oxidative stress in AAI. Moreover, upon allergen challenge, lung macrophages were highly activated in WT mice but were less activated in TLR2-/- mice, 2-DG replicated while EDHB reversed such effect of TLR2 deficiency on lung macrophages. Likewise, both in vivo and ex vivo WT alveolar macrophages (AMs) exhibited higher TLR2/hif1α expression, glycolysis and polarization activation in response to ovalbumin (OVA), which were all inhibited in TLR2-/- AMs, suggesting AMs activation and metabolic switch are dependent on TLR2. Finally, depletion of resident AMs in TLR2-/- mice abolished while transfer of TLR2-/- resident AMs to WT mice replicated the protective effect of TLR2 deficiency on AAI when administered before allergen challenge. Collectively, we suggested that loss of TLR2-hif1α-mediated glycolysis in resident AMs ameliorates allergic airway inflammation that inhibits pyroptosis and oxidative stress, therefore the TLR2-hif1α-glycolysis axis in resident AMs may be a novel therapeutic target for AAI.