Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Toxicol Environ Health A ; 86(21): 803-815, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37565650

RESUMO

Nosocomial infections (NIs) appear in patients under medical care in the hospital. The surveillance of the bacterial communities employing high-resolution 16S rRNA profiling, known as metabarcoding, represents a reliable method to establish factors that may influence the composition of the bacterial population during NIs. The present study aimed to utilize high-resolution 16S rRNA profiling to identify high bacterial diversity by analyzing 11 inside and 10 outside environments from the General Hospital of Ribeirão Preto Medical School, Brazil. Our results identified a high bacterial diversity, and among these, the most abundant bacterial genera linked to NIs were Cutibacterium, Streptococcus, Staphylococcus, and Corynebacterium. A Acinetobacter was detected in cafeterias, bus stops, and adult and pediatric intensive care units (ICUs). Data suggest an association between transport and alimentation areas proximal to the hospital ICU environment. Interestingly, the correlation and clusterization analysis showed the potential of the external areas to directly influence the ICU pediatric department microbial community, including the outpatient's clinic, visitor halls, patient reception, and the closest cafeterias. Our results demonstrate that high-resolution 16S rRNA profiling is a robust and reliable tool for bacterial genomic surveillance. In addition, the metabarcoding approach might help elaborate decontamination policies, and consequently reduce NIs.


Assuntos
Infecção Hospitalar , Microbiota , Adulto , Criança , Humanos , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Hospitais
2.
Front Plant Sci ; 15: 1403160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39258296

RESUMO

Introduction: Soybean is a significant export product for several countries, including the United States and Brazil. There are numerous varieties of soybean. Among them, a genetically modified type known as INTACTA RR2 PRO™ has been designed to demonstrate resistance to glyphosate and to produce toxins that are lethal to several species of caterpillars. Limited information is available on the use of Trichoderma harzianum and Bacillus subtilis to promote plant growth and their impact on the plant microbiome. Methods: This study aimed to evaluate the effects of these microorganisms on this soybean cultivar by analyzing parameters, such as root and shoot dry matter, nutritional status, and root and soil microbial diversity. Results: The results indicated that treatments with B. subtilis alone or in combination with T. harzianum as seed or seed and soil applications significantly enhanced plant height and biomass compared to the other treatments and the control. No significant differences in phosphorus and nitrogen concentrations were detected across treatments, although some treatments showed close correlations with these nutrients. Microbial inoculations slightly influenced the soil and root microbiomes, with significant beta diversity differences between soil and root environments, but had a limited overall impact on community composition. Discussion: The combined application of B. subtilis and T. harzianum particularly enhanced plant growth and promoted plant-associated microbial groups, such as Rhizobiaceae, optimizing plant-microbe interactions. Furthermore, the treatments resulted in a slight reduction in fungal richness and diversity.

3.
Biochim Biophys Acta Gene Regul Mech ; 1864(9): 194732, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34242825

RESUMO

Brain differential morphogenesis in females is one of the major phenotypic manifestations of caste development in honey bees. Brain diphenism appears at the fourth larval phase as a result of the differential feeding regime developing females are submitted during early phases of larval development. Here, we used a forward genetics approach to test the early brain molecular response to differential feeding leading to the brain diphenism observed at later developmental phases. Using RNA sequencing analysis, we identified 53 differentially expressed genes (DEGs) between the brains of queens and workers at the third larval phase. Since miRNAs have been suggested to play a role in caste differentiation after horizontal and vertical transmission, we tested their potential participation in regulating the DEGs. The miRNA-mRNA interaction network, including the DEGs and the royal- and worker-jelly enriched miRNA populations, revealed a subset of miRNAs potentially involved in regulating the expression of DEGs. The interaction of miR-34, miR-210, and miR-317 with Takeout, Neurotrophin-1, Forked, and Masquerade genes was experimentally confirmed using a luciferase reporter system. Taken together, our results reconstruct the regulatory network that governs the development of the early brain diphenism in honey bees.


Assuntos
Ração Animal/análise , Abelhas/crescimento & desenvolvimento , Perfilação da Expressão Gênica/veterinária , Redes Reguladoras de Genes , Animais , Abelhas/genética , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Larva/genética , Larva/crescimento & desenvolvimento , MicroRNAs/genética , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa