RESUMO
Niemann-Pick type C1 disease (NPC1 [OMIM 257220]) is a rare and severe autosomal recessive disorder, characterized by a multitude of neurovisceral clinical manifestations and a fatal outcome with no effective treatment to date. Aiming to gain insights into the genetic aspects of the disease, clinical, genetic, and biomarker PPCS data from 602 patients referred from 47 countries and diagnosed with NPC1 in our laboratory were analyzed. Patients' clinical data were dissected using Human Phenotype Ontology (HPO) terms, and genotype-phenotype analysis was performed. The median age at diagnosis was 10.6 years (range 0-64.5 years), with 287 unique pathogenic/likely pathogenic (P/LP) variants identified, expanding NPC1 allelic heterogeneity. Importantly, 73 P/LP variants were previously unpublished. The most frequent variants detected were: c.3019C > G, p.(P1007A), c.3104C > T, p.(A1035V), and c.2861C > T, p.(S954L). Loss of function (LoF) variants were significantly associated with earlier age at diagnosis, highly increased biomarker levels, and a visceral phenotype (abnormal abdomen and liver morphology). On the other hand, the variants p.(P1007A) and p.(S954L) were significantly associated with later age at diagnosis (p < 0.001) and mildly elevated biomarker levels (p ≤ 0.002), consistent with the juvenile/adult form of NPC1. In addition, p.(I1061T), p.(S954L), and p.(A1035V) were associated with abnormality of eye movements (vertical supranuclear gaze palsy, p ≤ 0.05). We describe the largest and most heterogenous cohort of NPC1 patients published to date. Our results suggest that besides its utility in variant classification, the biomarker PPCS might serve to indicate disease severity/progression. In addition, we establish new genotype-phenotype relationships for "frequent" NPC1 variants.
Assuntos
Fenótipo , Adulto , Humanos , Recém-Nascido , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Pessoa de Meia-IdadeRESUMO
To present our experience using a multiomic approach, which integrates genetic and biochemical testing as a first-line diagnostic tool for patients with inherited metabolic disorders (IMDs). A cohort of 3720 patients from 62 countries was tested using a panel including 206 genes with single nucleotide and copy number variant (SNV/CNV) detection, followed by semi-automatic variant filtering and reflex biochemical testing (25 assays). In 1389 patients (37%), a genetic diagnosis was achieved. Within this cohort, the highest diagnostic yield was obtained for patients from Asia (57.5%, mainly from Pakistan). Overall, 701 pathogenic/likely pathogenic unique SNVs and 40 CNVs were identified. In 620 patients, the result of the biochemical tests guided variant classification and reporting. Top five diagnosed diseases were: Gaucher disease, Niemann-Pick disease type A/B, phenylketonuria, mucopolysaccharidosis type I, and Wilson disease. We show that integrated genetic and biochemical testing facilitated the decision on clinical relevance of the variants and led to a high diagnostic yield (37%), which is comparable to exome/genome sequencing. More importantly, up to 43% of these patients (n = 610) could benefit from medical treatments (e.g., enzyme replacement therapy). This multiomic approach constitutes a unique and highly effective tool for the genetic diagnosis of IMDs.
Assuntos
Variações do Número de Cópias de DNA , Doenças Metabólicas , Exoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doenças Metabólicas/diagnóstico , Doenças Metabólicas/genética , Paquistão , Sequenciamento do ExomaRESUMO
Galloway-Mowat syndrome is a rare autosomal recessive disease characterized by a unique combination of renal and neurological manifestations, including early-onset steroid-resistant nephrotic syndrome, microcephaly, psychomotor delay, and gyral abnormalities of the brain. Most patients die during early childhood. Here, we identified a novel homozygous O-sialoglycoprotein endopeptidase (OSGEP) variant, NM_017807.3:c.973C>G (p.Arg325Gly), in four affected individuals in an extended consanguineous family from Saudi Arabia. We have described the detailed clinical characterization, brain imaging results, and muscle biopsy findings. The described phenotype varied from embryonic lethality to early pregnancy loss or death at the age of 9. Renal disease is often the cause of death. Protein modeling of this OSGEP variant confirmed its pathogenicity. In addition, proteomic analysis of the affected patients proposed a link between the KEOPS complex function and human pathology and suggested potential pathogenic mechanisms.