Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 275: 120171, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37196987

RESUMO

Congenital blindness leads to profound changes in electroencephalographic (EEG) resting state activity. A well-known consequence of congenital blindness in humans is the reduction of alpha activity which seems to go together with increased gamma activity during rest. These results have been interpreted as indicating a higher excitatory/inhibitory (E/I) ratio in visual cortex compared to normally sighted controls. Yet it is unknown whether the spectral profile of EEG during rest would recover if sight were restored. To test this question, the present study evaluated periodic and aperiodic components of the EEG resting state power spectrum. Previous research has linked the aperiodic components, which exhibit a power-law distribution and are operationalized as a linear fit of the spectrum in log-log space, to cortical E/I ratio. Moreover, by correcting for the aperiodic components from the power spectrum, a more valid estimate of the periodic activity is possible. Here we analyzed resting state EEG activity from two studies involving (1) 27 permanently congenitally blind adults (CB) and 27 age-matched normally sighted controls (MCB); (2) 38 individuals with reversed blindness due to bilateral, dense, congenital cataracts (CC) and 77 age-matched sighted controls (MCC). Based on a data driven approach, aperiodic components of the spectra were extracted for the low frequency (Lf-Slope 1.5 to 19.5 Hz) and high frequency (Hf-Slope 20 to 45 Hz) range. The Lf-Slope of the aperiodic component was significantly steeper (more negative slope), and the Hf-Slope of the aperiodic component was significantly flatter (less negative slope) in CB and CC participants compared to the typically sighted controls. Alpha power was significantly reduced, and gamma power was higher in the CB and the CC groups. These results suggest a sensitive period for the typical development of the spectral profile during rest and thus likely an irreversible change in the E/I ratio in visual cortex due to congenital blindness. We speculate that these changes are a consequence of impaired inhibitory circuits and imbalanced feedforward and feedback processing in early visual areas of individuals with a history of congenital blindness.


Assuntos
Catarata , Anormalidades do Olho , Córtex Visual , Adulto , Humanos , Cegueira/congênito , Eletroencefalografia , Transtornos da Visão
2.
Environ Res ; 233: 116485, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37352954

RESUMO

The importance of the social environment and social inequalities in disease etiology is well-known due to the profound research and conceptual framework on social determinants of health. For a long period, in exposome research with its classical orientation towards detrimental health effects of biological, chemical, and physical exposures, this knowledge remained underrepresented. But currently it gains great awareness and calls for innovations in rethinking the role of social environmental health determinants. To fill this gap that exists in terms of the social domain within exposome research, we propose a novel conceptual framework of the Social Exposome, to integrate the social environment in conjunction with the physical environment into the exposome concept. The iterative development process of the Social Exposome was based on a systematic compilation of social exposures in order to achieve a holistic portrayal of the human social environment - including social, psychosocial, socioeconomic, sociodemographic, local, regional, and cultural aspects, at individual and contextual levels. In order to move the Social Exposome beyond a mere compilation of exposures, three core principles are emphasized that underly the interplay of the multitude of exposures: Multidimensionality, Reciprocity, and Timing and continuity. The key focus of the conceptual framework of the Social Exposome is on understanding the underlying mechanisms that translate social exposures into health outcomes. In particular, insights from research on health equity and environmental justice have been incorporated to uncover how social inequalities in health emerge, are maintained, and systematically drive health outcomes. Three transmission pathways are presented: Embodiment, Resilience and Susceptibility or Vulnerability, and Empowerment. The Social Exposome conceptual framework may serve as a strategic map for, both, research and intervention planning, aiming to further explore the impact of the complex social environment and to alter transmission pathways to minimize health risks and health inequalities and to foster equity in health.


Assuntos
Expossoma , Humanos , Saúde Ambiental , Meio Ambiente , Meio Social , Fatores Socioeconômicos , Exposição Ambiental/análise
3.
Cereb Cortex ; 31(5): 2505-2522, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33338212

RESUMO

Congenital blindness has been shown to result in behavioral adaptation and neuronal reorganization, but the underlying neuronal mechanisms are largely unknown. Brain rhythms are characteristic for anatomically defined brain regions and provide a putative mechanistic link to cognitive processes. In a novel approach, using magnetoencephalography resting state data of congenitally blind and sighted humans, deprivation-related changes in spectral profiles were mapped to the cortex using clustering and classification procedures. Altered spectral profiles in visual areas suggest changes in visual alpha-gamma band inhibitory-excitatory circuits. Remarkably, spectral profiles were also altered in auditory and right frontal areas showing increased power in theta-to-beta frequency bands in blind compared with sighted individuals, possibly related to adaptive auditory and higher cognitive processing. Moreover, occipital alpha correlated with microstructural white matter properties extending bilaterally across posterior parts of the brain. We provide evidence that visual deprivation selectively modulates spectral profiles, possibly reflecting structural and functional adaptation.


Assuntos
Vias Auditivas/fisiopatologia , Cegueira/fisiopatologia , Lobo Frontal/fisiopatologia , Vias Visuais/fisiopatologia , Adulto , Vias Auditivas/diagnóstico por imagem , Vias Auditivas/fisiologia , Cegueira/diagnóstico por imagem , Imagem de Tensor de Difusão , Feminino , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiologia , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Plasticidade Neuronal/fisiologia , Lobo Occipital/diagnóstico por imagem , Lobo Occipital/fisiologia , Lobo Occipital/fisiopatologia , Vias Visuais/diagnóstico por imagem , Vias Visuais/fisiologia , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Substância Branca/fisiopatologia , Adulto Jovem
4.
Neuroimage ; 194: 259-271, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30853565

RESUMO

Congenitally blind individuals have been shown to activate the visual cortex during non-visual tasks. The neuronal mechanisms of such cross-modal activation are not fully understood. Here, we used an auditory working memory training paradigm in congenitally blind and in sighted adults. We hypothesized that the visual cortex gets integrated into auditory working memory networks, after these networks have been challenged by training. The spectral profile of functional networks was investigated which mediate cross-modal reorganization following visual deprivation. A training induced integration of visual cortex into task-related networks in congenitally blind individuals was expected to result in changes in long-range functional connectivity in the theta-, beta- and gamma band (imaginary coherency) between visual cortex and working memory networks. Magnetoencephalographic data were recorded in congenitally blind and sighted individuals during resting state as well as during a voice-based working memory task; the task was performed before and after working memory training with either auditory or tactile stimuli, or a control condition. Auditory working memory training strengthened theta-band (2.5-5 Hz) connectivity in the sighted and beta-band (17.5-22.5 Hz) connectivity in the blind. In sighted participants, theta-band connectivity increased between brain areas typically involved in auditory working memory (inferior frontal, superior temporal, insular cortex). In blind participants, beta-band networks largely emerged during the training, and connectivity increased between brain areas involved in auditory working memory and as predicted, the visual cortex. Our findings highlight long-range connectivity as a key mechanism of functional reorganization following congenital blindness, and provide new insights into the spectral characteristics of functional network connectivity.


Assuntos
Ritmo beta/fisiologia , Cegueira/fisiopatologia , Memória de Curto Prazo/fisiologia , Córtex Visual/fisiologia , Córtex Visual/fisiopatologia , Estimulação Acústica , Adulto , Cegueira/congênito , Feminino , Humanos , Aprendizagem/fisiologia , Masculino , Vias Neurais/fisiopatologia
5.
Front Hum Neurosci ; 14: 72, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256326

RESUMO

Working memory (WM) refers to the temporary retention and manipulation of information, and its capacity is highly susceptible to training. Yet, the neural mechanisms that allow for increased performance under demanding conditions are not fully understood. We expected that post-training efficiency in WM performance modulates neural processing during high load tasks. We tested this hypothesis, using electroencephalography (EEG) (N = 39), by comparing source space spectral power of healthy adults performing low and high load auditory WM tasks. Prior to the assessment, participants either underwent a modality-specific auditory WM training, or a modality-irrelevant tactile WM training, or were not trained (active control). After a modality-specific training participants showed higher behavioral performance, compared to the control. EEG data analysis revealed general effects of WM load, across all training groups, in the theta-, alpha-, and beta-frequency bands. With increased load theta-band power increased over frontal, and decreased over parietal areas. Centro-parietal alpha-band power and central beta-band power decreased with load. Interestingly, in the high load condition a tendency toward reduced beta-band power in the right medial temporal lobe was observed in the modality-specific WM training group compared to the modality-irrelevant and active control groups. Our finding that WM processing during the high load condition changed after modality-specific WM training, showing reduced beta-band activity in voice-selective regions, possibly indicates a more efficient maintenance of task-relevant stimuli. The general load effects suggest that WM performance at high load demands involves complementary mechanisms, combining a strengthening of task-relevant and a suppression of task-irrelevant processing.

6.
Behav Brain Res ; 348: 31-41, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29655595

RESUMO

The functional relevance of crossmodal activation (e.g. auditory activation of occipital brain regions) in congenitally blind individuals is still not fully understood. The present study tested whether the occipital cortex of blind individuals is integrated into a challenged functional network. A working memory (WM) training over four sessions was implemented. Congenitally blind and matched sighted participants were adaptively trained with an n-back task employing either voices (auditory training) or tactile stimuli (tactile training). In addition, a minimally demanding 1-back task served as an active control condition. Power and functional connectivity of EEG activity evolving during the maintenance period of an auditory 2-back task were analyzed, run prior to and after the WM training. Modality-specific (following auditory training) and modality-independent WM training effects (following both auditory and tactile training) were assessed. Improvements in auditory WM were observed in all groups, and blind and sighted individuals did not differ in training gains. Auditory and tactile training of sighted participants led, relative to the active control group, to an increase in fronto-parietal theta-band power, suggesting a training-induced strengthening of the existing modality-independent WM network. No power effects were observed in the blind. Rather, after auditory training the blind showed a decrease in theta-band connectivity between central, parietal, and occipital electrodes compared to the blind tactile training and active control groups. Furthermore, in the blind auditory training increased beta-band connectivity between fronto-parietal, central and occipital electrodes. In the congenitally blind, these findings suggest a stronger integration of occipital areas into the auditory WM network.


Assuntos
Cegueira/fisiopatologia , Memória de Curto Prazo/fisiologia , Lobo Occipital/fisiopatologia , Adulto , Encéfalo/fisiopatologia , Mapeamento Encefálico/métodos , Eletrocardiografia/métodos , Feminino , Lateralidade Funcional/fisiologia , Humanos , Aprendizagem/fisiologia , Masculino , Pessoa de Meia-Idade , Tato/fisiologia , Pessoas com Deficiência Visual
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa