RESUMO
Plants exhibit impressive genetic and chemical diversity, not just between species but also within species, and the importance of plant intraspecific variation for structuring ecological communities is well known. When there is variation at the local population level, this can create a spatially heterogeneous habitat for specialised herbivores potentially leading to non-random distribution of individuals across host plants. Plant variation can affect herbivores directly and indirectly via a third species, resulting in variable herbivore growth rates across different host plants. Herbivores also exhibit within-species variation, with some genotypes better adapted to some plant variants than others. We genotyped aphids collected across 2 years from a field site containing ~200 patchily distributed host plants that exhibit high chemical diversity. The distribution of aphid genotypes, their ant mutualists, and other predators was assessed across the plants. We present evidence that the local distribution of aphid (Metopeurum fuscoviride) genotypes across host-plant individuals is associated with variation in the plant volatiles (chemotypes) and non-volatile metabolites (metabotypes) of their host plant tansy (Tanacetum vulgare). Furthermore, these interactions in the field were influenced by plant-host preferences of aphid-mutualist ants. Our results emphasise that plant intraspecific variation can structure ecological communities not only at the species level but also at the genetic level within species and that this effect can be enhanced through indirect interactions with a third species.
Assuntos
Formigas , Afídeos , Animais , Genética Populacional , Herbivoria , SimbioseRESUMO
Carabid beetles are abundant in temperate agroecosystems and can play a pivotal role as biocontrol agents. While there is good knowledge regarding their effects on invertebrate pests in some systems, comparably little is known on the rate of seed feeding under field conditions. Molecular approaches are ideally suited for investigating carabid feeding interactions; to date, however, they have only been applied to animal prey. We sampled adult carabid beetles in organic cereal fields in three regions along a Central European transect. Regurgitates from populations of the three most common species, Poecilus cupreus, Pseudoophonus rufipes and Pterostichus melanarius, were screened for plant DNA, cereal aphids, collembolans and earthworms. The frequency of carabid individuals positive for plant DNA was high (> 70%) and independent of carabid species, sex, region and the time point of sampling. Detections for non-pest and pest prey were comparably lower, with 21.6% for collembolans, 18.1% for earthworms and 4.2% for aphids, respectively. Despite the prolonged detection period of plant DNA in carabid guts, as compared to animal prey, these first results suggest that weed seeds form an important part of the adult carabid diet. It would also lend support to the hypothesis that seed-feeding carabids are biocontrol agents of weeds, with effects of regulation on the weed seedbank that depend on behavioural and contextual factors including carabid species preferences for weed seed species, their life stage and tillage practices.
RESUMO
Carabids are abundant in temperate agroecosystems and play a pivotal role as biocontrol agents for weed seed and pest regulation. While there is good knowledge regarding their effects on invertebrate pests, direct evidence for seed predation in the field is missing. Molecular approaches are ideally suited to investigate these feeding interactions; however, the effects of an omnivorous diet, which is characteristic for many carabid species, and seed identity on the detection success of seed DNA has not yet been investigated. In a series of feeding experiments, seeds of six different Central European weed species were fed to beetles of the species Pseudoophonus rufipes, to determine post-feeding seed DNA detection rates and how these are affected by plant identity, meal size, and chemical seed composition. Moreover, we investigated the effect of a mixed diet of seeds and mealworm on prey DNA detection. Four out of six seed species were detectable for up to five days after consumption, and seed species identity significantly affected post-feeding detection rates. Detectability was negatively influenced by protein content and seed mass, whereas oil content and meal size had a positive effect. The mixed diet led to both increased detection rates and post-feeding detection intervals of seed DNA. This suggests that mixed feeding leads to an enhancement of food detection intervals in carabid beetles and that seed identity, their chemical composition, and meal size can affect DNA detection of consumed seeds. These aspects and potential implications of this non-invasive approach are discussed as they can become highly relevant for interpreting field-derived data.