Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 41(25): 5453-5470, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-33980544

RESUMO

Dopaminergic neurons of the substantia nigra pars compacta (SNC) and ventral tegmental area (VTA) exhibit spontaneous firing activity. The dopaminergic neurons in these regions have been shown to exhibit differential sensitivity to neuronal loss and psychostimulants targeting dopamine transporter. However, it remains unclear whether these regional differences scale beyond individual neuronal activity to regional neuronal networks. Here, we used live-cell calcium imaging to show that network connectivity greatly differs between SNC and VTA regions with higher incidence of hub-like neurons in the VTA. Specifically, the frequency of hub-like neurons was significantly lower in SNC than in the adjacent VTA, consistent with the interpretation of a lower network resilience to SNC neuronal loss. We tested this hypothesis, in DAT-cre/loxP-GCaMP6f mice of either sex, when activity of an individual dopaminergic neuron is suppressed, through whole-cell patch clamp electrophysiology, in either SNC or VTA networks. Neuronal loss in the SNC increased network clustering, whereas the larger number of hub-neurons in the VTA overcompensated by decreasing network clustering in the VTA. We further show that network properties are regulatable via a dopamine transporter but not a D2 receptor dependent mechanism. Our results demonstrate novel regulatory mechanisms of functional network topology in dopaminergic brain regions.SIGNIFICANCE STATEMENT In this work, we begin to untangle the differences in complex network properties between the substantia nigra pars compacta (SNC) and VTA, that may underlie differential sensitivity between regions. The methods and analysis employed provide a springboard for investigations of network topology in multiple deep brain structures and disorders.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Rede Nervosa/fisiologia , Parte Compacta da Substância Negra/fisiologia , Área Tegmentar Ventral/fisiologia , Animais , Feminino , Masculino , Camundongos
2.
Front Immunol ; 14: 1281705, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022545

RESUMO

Objective: The aim of this study was to systematically review the neuroimmunology literature to determine the average immune cell counts reported by flow cytometry in wild-type (WT) homogenized mouse brains. Background: Mouse models of gene dysfunction are widely used to study age-associated neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. The importance of the neuroimmune system in these multifactorial disorders has become increasingly evident, and methods to quantify resident and infiltrating immune cells in the brain, including flow cytometry, are necessary. However, there appears to be no consensus on the best approach to perform flow cytometry or quantify/report immune cell counts. The development of more standardized methods would accelerate neuroimmune discovery and validation by meta-analysis. Methods: There has not yet been a systematic review of 'neuroimmunology' by 'flow cytometry' via examination of the PROSPERO registry. A protocol for a systematic review was subsequently based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) using the Studies, Data, Methods, and Outcomes (SDMO) criteria. Literature searches were conducted in the Google Scholar and PubMed databases. From that search, 900 candidate studies were identified, and 437 studies were assessed for eligibility based on formal exclusion criteria. Results: Out of the 437 studies reviewed, 58 were eligible for inclusion and comparative analysis. Each study assessed immune cell subsets within homogenized mouse brains and used flow cytometry. Nonetheless, there was considerable variability in the methods, data analysis, reporting, and results. Descriptive statistics have been presented on the study designs and results, including medians with interquartile ranges (IQRs) and overall means with standard deviations (SD) for specific immune cell counts and their relative proportions, within and between studies. A total of 58 studies reported the most abundant immune cells within the brains were TMEM119+ microglia, bulk CD4+ T cells, and bulk CD8+ T cells. Conclusion: Experiments to conduct and report flow cytometry data, derived from WT homogenized mouse brains, would benefit from a more standardized approach. While within-study comparisons are valid, the variability in methods of counting of immune cell populations is too broad for meta-analysis. The inclusion of a minimal protocol with more detailed methods, controls, and standards could enable this nascent field to compare results across studies.


Assuntos
Linfócitos T CD8-Positivos , Projetos de Pesquisa , Animais , Camundongos , Encéfalo , Citometria de Fluxo , Revisões Sistemáticas como Assunto
3.
PLoS One ; 14(9): e0222957, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31536584

RESUMO

The ventral midbrain supports a variety of functions through the heterogeneity of neurons. Dopaminergic and GABA neurons within this region are particularly susceptible targets of amphetamine-class psychostimulants such as methamphetamine. While this has been evidenced through single-neuron methods, it remains unclear whether and to what extent the local neuronal network is affected and if so, by which mechanisms. Both GABAergic and dopaminergic neurons were heavily featured within the primary ventral midbrain network model system. Using spontaneous calcium activity, our data suggest methamphetamine decreased total network output via a D2 receptor-dependent manner. Over culture duration, functional connectivity between neurons decreased significantly but was unaffected by methamphetamine. However, across culture duration, exposure to methamphetamine significantly altered changes in network assortativity. Here we have established primary ventral midbrain networks culture as a viable model system that reveals specific changes in network activity, connectivity, and topology modulation by methamphetamine. This network culture system enables control over the type and number of neurons that comprise a network and facilitates detection of emergent properties that arise from the specific organization. Thus, the multidimensional properties of methamphetamine can be unraveled, leading to a better understanding of its impact on the local network structure and function.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios GABAérgicos/efeitos dos fármacos , Metanfetamina/farmacologia , Rede Nervosa/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Células Cultivadas , Estimulantes do Sistema Nervoso Central/farmacologia , Neurônios Dopaminérgicos/fisiologia , Feminino , Neurônios GABAérgicos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Neuroimagem/métodos , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/fisiologia , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa