Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 27(12): 4150-4158, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33326151

RESUMO

Porous graphene with catalytically active ceria nanometre-size particles were prepared using pulsed laser deposition (PLD) on graphene produced through chemical vapour deposition (CVD). The reported process provided porous graphene containing ceria nanoparticles as confirmed by HR TEM and XPS. Isotopically labelled 13 C graphene was employed to study desorption of the species containing carbon. Methanol adsorption was utilised to probe the nature of the catalytic activity of prepared ceria decorated graphene. The important role of graphene support for the stabilization of reduced ceria nanoparticles was finally confirmed. Increased dehydrogenation activity of graphene with ceria nanoparticles leading to CO and H2 formation was demonstrated.

2.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206350

RESUMO

The monolayer character of two-dimensional materials predestines them for application as active layers of sensors. However, their inherent high sensitivity is always accompanied by a low selectivity. Chemical functionalization of two-dimensional materials has emerged as a promising way to overcome the selectivity issues. Here, we demonstrate efficient graphene functionalization with carbohydrate ligands-chitooligomers, which bind proteins of the lectin family with high selectivity. Successful grafting of a chitooligomer library was thoroughly characterized, and glycan binding to wheat germ agglutinin was studied by a series of methods. The results demonstrate that the protein quaternary structure remains intact after binding to the functionalized graphene, and that the lectin can be liberated from the surface by the addition of a binding competitor. The chemoenzymatic assay with a horseradish peroxidase conjugate also confirmed the intact catalytic properties of the enzyme. The present approach thus paves the way towards graphene-based sensors for carbohydrate-lectin binding.


Assuntos
Grafite/química , Lectinas/metabolismo , Polissacarídeos/química , Peroxidase do Rábano Silvestre , Lectinas/análise , Polissacarídeos/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína
3.
Chempluschem ; 88(9): e202300280, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37503683

RESUMO

Layered optoelectronic devices are manufactured using multistep procedures that require high precision in the spatial positioning of individual materials. Current technology uses costly and tedious procedures and instrumentation. In this work instead, we propose an approach which exploits the fundamental properties of the substrate to direct the growth of the next layer, here controlled by an electrochemical potential. We have electrochemically synthesized and characterized a series of polymeric materials that are most commonly used in the field. The films produced show gradient monomer ratios embedded in the polymeric film as a function of the distance from the working electrode. Under the optimized conditions, reproducible construction of simple electronic elements, e. g., rectifying diodes, is achieved. We argue that the sequential in situ method leads to gradient composition of polymer chains and the film resulting in the rectification of electric current. We discuss how this system can open new avenues in advanced optoelectronic applications, such as organic light-emitting diodes (OLEDs) or field-effect transistors (OFETs).

4.
RSC Adv ; 11(17): 10316-10322, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35423537

RESUMO

Monolayer and isotopically labelled bilayer graphene membranes were prepared on grids for transmission electron microscopy (TEM). In order to create defects in the graphene layers in a controlled way, we studied the sensitivity of the individual graphene layers to the oxygen plasma treatment. We tested samples with different configurations by varying the order of the transfer of layers and changing the orientation of the samples with respect to the plasma chamber. Using Raman spectroscopy, HRTEM and X-ray photoelectron spectroscopy, we demonstrated defect formation and determined the quantity and chemical composition of the defects. By keeping the sample structure and the setup of the experiment unchanged, the significant role of the sample orientation with respect to the chamber was demonstrated. The effect was accounted for by the variation of the accessibility of the sample surface for the reactive species. Therefore, this effect can be used to control the degree of damage in each layer, resulting in differing numbers of defects present on each side of the sample.

5.
Nanoscale ; 12(5): 3019-3028, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31834348

RESUMO

Characterization of the type and density of defects in two-dimensional (2D) transition metal dichalcogenides (TMDs) is important as the nature of these defects strongly influences the electronic and optical properties of the material, especially its photoluminescence (PL). Defect characterization is not as straightforward as it is for graphene films, where the D and D' Raman scattering modes easily indicate the density and type of defects in the graphene layer. Thus, in addition to the Raman scattering analysis, other spectroscopic techniques are necessary to perform detailed characterization of atomically thin TMD layers. We demonstrate that PL spectroscopy performed at liquid helium temperatures reveals the key fingerprints of defects in TMDs and hence provides valuable information about their origin and concentration. In our study, we address defects in chemical vapor deposition (CVD)-grown MoS2 monolayers. A significant difference is observed between the as-grown monolayers compared with the CVD-grown monolayers transferred onto a Si/SiO2 substrate, which contain extra defects due to the transfer process. We demonstrate that the temperature-dependent Raman and PL micro-spectroscopy techniques enable disentangling the contributions and locations of various defect types in TMD systems.

6.
Sci Rep ; 10(1): 4516, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32161329

RESUMO

Graphene-enhanced Raman scattering (GERS) on isotopically labelled bilayer and a single layer of pristine and partially hydrogenated graphene has been studied. The hydrogenated graphene sample showed a change in relative intensities of Raman bands of Rhodamine 6 G (R6G) with different vibrational energies deposited on a single layer and bilayer graphene. The change corresponds qualitatively to different doping of graphene in both areas. Pristine graphene sample exhibited no difference in doping nor relative intensities of R6G Raman peaks in the single layer and bilayer areas. Therefore, it was concluded that strain and strain inhomogeneities do not affect the GERS. Because of analyzing relative intensities of selected peaks of the R6G probe molecules, it is possible to obtain these results without determining the enhancement factor and without assuming homogeneous coverage of the molecules. Furthermore, we tested the approach on copper phtalocyanine molecules.

7.
Nanoscale ; 10(7): 3198-3211, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29379917

RESUMO

The emission of light in two-dimensional (2-D) layered hybrid organic lead halide perovskites, namely (R-NH3)2PbX4, can be effectively tuned using specific building blocks for the perovskite formation. Herein this behaviour is combined with a non-covalent graphene functionalization allowing excellent selectivity and spatial resolution of the perovskite film growth, promoting the formation of hybrid 2-D perovskite : graphene heterostructures with uniform coverage of up to centimeter scale graphene sheets and arbitrary shapes down to 5 µm. Using cryo-Raman microspectroscopy, highly resolved spectra of the perovskite phases were obtained and the Raman mapping served as a convenient spatially resolved technique for monitoring the distribution of the perovskite and graphene constituents on the substrate. In addition, the stability of the perovskite phase with respect to the thermal variation was inspected in situ by X-ray diffraction. Finally, time-resolved photoluminescence characterization demonstrated that the optical properties of the perovskite films grown on graphene are not hampered. Our study thus opens the door to smart fabrication routes for (opto)-electronic devices based on 2-D perovskites in contact with graphene with complex architectures.

8.
J Phys Chem Lett ; 5(20): 3532-8, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26278605

RESUMO

The role of chloride in the MAPbI3-xClx perovskite is still limitedly understood, albeit subjected of much debate. Here, we present a combined angle-resolved X-ray photoelectron spectroscopy (AR-XPS) and first-principles DFT modeling to investigate the MAPbI3-xClx/TiO2 interface. AR-XPS analyses carried out on ad hoc designed bilayers of MAPbI3-xClx perovskite deposited onto a flat TiO2 substrate reveal that the chloride is preferentially located in close proximity to the perovskite/TiO2 interface. DFT calculations indicate the preferential location of chloride at the TiO2 interface compared to the bulk perovskite due to an increased chloride-TiO2 surface affinity. Furthermore, our calculations clearly demonstrate an interfacial chloride-induced band bending, creating a directional "electron funnel" that may improve the charge collection efficiency of the device and possibly affecting also recombination pathways. Our findings represent a step forward to the rationalization of the peculiar properties of mixed halide perovskite, allowing one to further address material and device design issues.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa