Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Exp Parasitol ; 182: 9-15, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28867354

RESUMO

Visceral leishmaniasis is a public health problem worldwide. The early diagnosis in dogs is crucial, since they are an epidemiologically relevant reservoir of the disease. The aim of a field study is to early identify the disease allowing rapid intervention to reduce its effects. We propose an immunoagglutination test as a visual in situ method for diagnosis of canine visceral leishmaniasis. Latex-protein complexes were sensitized by covalent coupling of a chimeric recombinant antigen of Leishmania spp. onto polystyrene latex with carboxyl functionality. The reaction time and the antigen concentration under which the immunoagglutination assay shows greater discrimination between the responses of a positive control serum and a negative control serum were determined. Then, the latex-protein complexes were evaluated as a visual diagnostic tool with a panel of 170 sera. The test may be read between 2 and 5 min and can be performed even using sera with elevated concentration of lipids, bilirubin or with variable percentage of hemolysis. The sensitivity, the specificity and the diagnostic accuracy were 78%; 100% and >80%, respectively. The visual immunoagglutination test is of potential application as a method for field studies because it shows results in less than 5 min, it is easy to implement and does not require sophisticated equipment.


Assuntos
Anticorpos Antiprotozoários/sangue , Doenças do Cão/diagnóstico , Testes de Fixação do Látex/veterinária , Leishmania infantum/imunologia , Leishmaniose Visceral/veterinária , Animais , Antígenos de Protozoários/imunologia , Western Blotting/veterinária , Reservatórios de Doenças , Doenças do Cão/parasitologia , Cães , Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/parasitologia , Proteínas Recombinantes/imunologia , Sensibilidade e Especificidade
2.
Biochim Biophys Acta ; 1850(6): 1233-44, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25725270

RESUMO

BACKGROUND: Entamoeba histolytica, an intestinal parasite that is the causative agent of amoebiasis, is exposed to elevated amounts of highly toxic reactive oxygen and nitrogen species during tissue invasion. A flavodiiron protein and a rubrerythrin have been characterized in this human pathogen, although their physiological reductants have not been identified. METHODS: The present work deals with biochemical studies performed to reach a better understanding of the kinetic and structural properties of rubredoxin reductase and two ferredoxins from E. histolytica. RESULTS: We complemented the characterization of two different metabolic pathways for O2 and H2O2 detoxification in E. histolytica. We characterized a novel amoebic protein with rubredoxin reductase activity that is able to catalyze the NAD(P)H-dependent reduction of heterologous rubredoxins, amoebic rubrerythrin and flavodiiron protein but not ferredoxins. In addition, the protein exhibited an NAD(P)H oxidase activity, which generates hydrogen peroxide from molecular oxygen. We describe how different ferredoxins were also efficient reducing substrates for both flavodiiron protein and rubrerythrin. CONCLUSIONS: The enzymatic systems herein characterized could contribute to the in vivo detoxification of O2 and H2O2, playing a key role for the parasite defense against reactive oxidant species. GENERAL SIGNIFICANCE: To the best of our knowledge this is the first characterization of a eukaryotic rubredoxin reductase, including a novel kinetic study on ferredoxin-dependent reduction of flavodiiron and rubrerythrin proteins.


Assuntos
Entamoeba histolytica/enzimologia , NADH NADPH Oxirredutases/metabolismo , Proteínas de Protozoários/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Clonagem Molecular , Entamoeba histolytica/genética , Hemeritrina/metabolismo , Peróxido de Hidrogênio/metabolismo , Cinética , NADH NADPH Oxirredutases/genética , NADP/metabolismo , Oxirredução , Oxigênio/metabolismo , Proteínas de Protozoários/genética , Proteínas Recombinantes/metabolismo , Rubredoxinas/metabolismo
3.
Biochim Biophys Acta ; 1850(1): 88-96, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25316289

RESUMO

BACKGROUND: Giardia lamblia is a pathogen of humans and other vertebrates. The synthesis of glycogen and of structural oligo and polysaccharides critically determine the parasite's capacity for survival and pathogenicity. These characteristics establish that UDP-glucose is a relevant metabolite, as it is a main substrate to initiate varied carbohydrate metabolic routes. RESULTS: Herein, we report the molecular cloning of the gene encoding UDP-glucose pyrophosphorylase from genomic DNA of G. lamblia, followed by its heterologous expression in Escherichia coli. The purified recombinant enzyme was characterized to have a monomeric structure. Glucose-1-phosphate and UTP were preferred substrates, but the enzyme also used galactose-1-phosphate and TTP. The catalytic efficiency to synthesize UDP-galactose was significant. Oxidation by physiological compounds (hydrogen peroxide and nitric oxide) inactivated the enzyme and the process was reverted after reduction by cysteine and thioredoxin. UDP-N-acetyl-glucosamine pyrophosphorylase, the other UTP-related enzyme in the parasite, neither used galactose-1-phosphate nor was affected by redox modification. CONCLUSIONS: Our results suggest that in G. lamblia the UDP-glucose pyrophosphorylase is regulated by oxido-reduction mechanism. The enzyme exhibits the ability to synthesize UDP-glucose and UDP-galactose and it plays a key role providing substrates to glycosyl transferases that produce oligo and polysaccharides. GENERAL SIGNIFICANCE: The characterization of the G. lamblia UDP-glucose pyrophosphorylase reinforces the view that in protozoa this enzyme is regulated by a redox mechanism. As well, we propose a new pathway for UDP-galactose production mediated by the promiscuous UDP-glucose pyrophosphorylase of this organism.


Assuntos
Galactosefosfatos/metabolismo , Giardia lamblia/enzimologia , Proteínas de Protozoários/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Sequência de Aminoácidos , Biocatálise , Clonagem Molecular , Cisteína/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Giardia lamblia/genética , Glucofosfatos/metabolismo , Cinética , Dados de Sequência Molecular , Oxirredução , Proteínas de Protozoários/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Tiorredoxinas/metabolismo , Fatores de Tempo , UTP-Glucose-1-Fosfato Uridililtransferase/genética
4.
Biochim Biophys Acta ; 1850(1): 13-21, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25277548

RESUMO

BACKGROUND: Mycobacterium tuberculosis is a pathogenic prokaryote adapted to survive in hostile environments. In this organism and other Gram-positive actinobacteria, the metabolic pathways of glycogen and trehalose are interconnected. RESULTS: In this work we show the production, purification and characterization of recombinant enzymes involved in the partitioning of glucose-1-phosphate between glycogen and trehalose in M. tuberculosis H37Rv, namely: ADP-glucose pyrophosphorylase, glycogen synthase, UDP-glucose pyrophosphorylase and trehalose-6-phosphate synthase. The substrate specificity, kinetic parameters and allosteric regulation of each enzyme were determined. ADP-glucose pyrophosphorylase was highly specific for ADP-glucose while trehalose-6-phosphate synthase used not only ADP-glucose but also UDP-glucose, albeit to a lesser extent. ADP-glucose pyrophosphorylase was allosterically activated primarily by phosphoenolpyruvate and glucose-6-phosphate, while the activity of trehalose-6-phosphate synthase was increased up to 2-fold by fructose-6-phosphate. None of the other two enzymes tested exhibited allosteric regulation. CONCLUSIONS: Results give information about how the glucose-1-phosphate/ADP-glucose node is controlled after kinetic and regulatory properties of key enzymes for mycobacteria metabolism. GENERAL SIGNIFICANCE: This work increases our understanding of oligo and polysaccharides metabolism in M. tuberculosis and reinforces the importance of the interconnection between glycogen and trehalose biosynthesis in this human pathogen.


Assuntos
Glucofosfatos/metabolismo , Glicogênio/biossíntese , Redes e Vias Metabólicas , Mycobacterium tuberculosis/metabolismo , Trealose/biossíntese , Regulação Alostérica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Glucose-6-Fosfato/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Cinética , Modelos Biológicos , Mycobacterium tuberculosis/enzimologia , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , UTP-Glucose-1-Fosfato Uridililtransferase/genética , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo
5.
Rev Invest Clin ; 68(6): 286-291, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28134939

RESUMO

BACKGROUND: The origin (native or non-native) of Trypanosoma cruzi strains used as substrate for immunoassays may influence their performance. OBJECTIVE: To assess the performance of an immunoassay based on a native T. cruzi strain compared to another based on non-native T. cruzi strains, in asymptomatic blood donors from Mexico. METHODS: Serum samples from a tertiary referral center were tested by both ELISA-INC9 (native) and Chagatest (non-native) assays. All reactive serum samples were further analyzed by indirect immunofluorescence. RESULTS: Sera from 1,098 asymptomatic blood donors were tested. A 4.3 and 0.7% serum reactivity prevalence was observed using ELISA-INC9 and Chagatest, respectively (kappa = 0.13; -0.11 to 0.38). Subsequently, indirect immunofluorescence analyses showed higher positivity in serum samples reactive by ELISA-INC9 compared to those reactive by Chagatest (79 vs. 62.5%; p < 0.001). Furthermore, out of the 47 positive samples by both ELISA-INC9 and indirect immunofluorescence, only four (8.5%) were reactive in Chagatest assay. Meanwhile, four (80%) out of the five positive samples by both Chagatest and indirect immunofluorescence were reactive using ELISA-INC9. CONCLUSION: Immunoassays based on a native T. cruzi strain perform better than those based on non-native strains, highlighting the need to develop and validate screening assays in accordance to endemic T. cruzi strains.


Assuntos
Doadores de Sangue , Doença de Chagas/diagnóstico , Imunoensaio/métodos , Trypanosoma cruzi/isolamento & purificação , Doença de Chagas/parasitologia , Ensaio de Imunoadsorção Enzimática/métodos , Técnica Indireta de Fluorescência para Anticorpo/métodos , Humanos , México , Testes Sorológicos/métodos , Especificidade da Espécie
6.
Mol Microbiol ; 90(5): 1011-27, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24112771

RESUMO

Streptococcus mutans is the leading cause of dental caries worldwide. The bacterium accumulates a glycogen-like internal polysaccharide, which mainly contributes to its carionegic capacity. S.mutans has two genes (glgC and glgD) respectively encoding putative ADP-glucose pyrophosphorylases (ADP-Glc PPase), a key enzyme for glycogen synthesis in most bacteria. Herein, we report the molecular cloning and recombinant expression of both genes (separately or together) followed by the characterization of the respective enzymes. When expressed individually GlgC had ADP-Glc PPase activity, whereas GlgD was inactive. Interestingly, the coexpressed GlgC/GlgD protein was one order of magnitude more active than GlgC alone. Kinetic characterization of GlgC and GlgC/GlgD pointed out remarkable differences between them. Fructose-1,6-bis-phosphate activated GlgC by twofold, but had no effect on GlgC/GlgD. Conversely, phospho-enol-pyruvate and inorganic salts inhibited GlgC/GlgD without affecting GlgC. However, in the presence of fructose-1,6-bis-phosphate GlgC acquired a GlgC/GlgD-like behaviour, becoming sensitive to the stated inhibitors. Results indicate that S. mutans ADP-Glc PPase is an allosteric regulatory enzyme exhibiting sensitivity to modulation by key intermediates of carbohydrates metabolism in the cell. The particular regulatory properties of the S.mutans enzyme agree with phylogenetic analysis, where GlgC and GlgD proteins found in other Firmicutes arrange in distinctive clusters.


Assuntos
Glucose-1-Fosfato Adenililtransferase/metabolismo , Polissacarídeos Bacterianos/biossíntese , Streptococcus mutans/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Sequência Conservada , Frutosefosfatos/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Glucose-1-Fosfato Adenililtransferase/química , Glucose-1-Fosfato Adenililtransferase/genética , Modelos Moleculares , Fosfoenolpiruvato/metabolismo , Filogenia , Conformação Proteica , Estrutura Secundária de Proteína , Sais/metabolismo , Streptococcus mutans/genética
7.
J Biol Inorg Chem ; 19(6): 913-21, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24647732

RESUMO

Pseudoazurin (Paz) is the physiological electron donor to copper-containing nitrite reductase (Nir), which catalyzes the reduction of NO2 (-) to NO. The Nir reaction mechanism involves the reduction of the type 1 (T1) copper electron transfer center by the external physiological electron donor, intramolecular electron transfer from the T1 copper center to the T2 copper center, and nitrite reduction at the type 2 (T2) copper catalytic center. We report the cloning, expression, and characterization of Paz from Sinorhizobium meliloti 2011 (SmPaz), the ability of SmPaz to act as an electron donor partner of S. meliloti 2011 Nir (SmNir), and the redox properties of the metal centers involved in the electron transfer chain. Gel filtration chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis together with UV-vis and EPR spectroscopies revealed that as-purified SmPaz is a mononuclear copper-containing protein that has a T1 copper site in a highly distorted tetrahedral geometry. The SmPaz/SmNir interaction investigated electrochemically showed that SmPaz serves as an efficient electron donor to SmNir. The formal reduction potentials of the T1 copper center in SmPaz and the T1 and T2 copper centers in SmNir, evaluated by cyclic voltammetry and by UV-vis- and EPR-mediated potentiometric titrations, are against an efficient Paz T1 center to Nir T1 center to Nir T2 center electron transfer. EPR experiments proved that as a result of the SmPaz/SmNir interaction in the presence of nitrite, the order of the reduction potentials of SmNir reversed, in line with T1 center to T2 center electron transfer being thermodynamically more favorable.


Assuntos
Azurina/metabolismo , Elétrons , Nitrito Redutases/metabolismo , Sinorhizobium meliloti/química , Azurina/química , Azurina/genética , Oxirredução , Sinorhizobium meliloti/metabolismo , Termodinâmica
8.
Biochim Biophys Acta ; 1820(12): 1859-66, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22967759

RESUMO

BACKGROUND: Entamoeba histolytica, an intestinal protozoan that is the causative agent of amoebiasis, is exposed to elevated amounts of highly toxic reactive oxygen and nitrogen species during tissue invasion. Thioredoxin reductase catalyzes the reversible transfer of reducing equivalents between NADPH and thioredoxin, a small protein that plays key metabolic functions in maintaining the intracellular redox balance. METHODS: The present work deals with in vitro steady state kinetic studies aimed to reach a better understanding of the kinetic and structural properties of thioredoxin reductase from E. histolytica (EhTRXR). RESULTS: Our results support that native EhTRXR is a homodimeric covalent protein that is able to catalyze the NAD(P)H-dependent reduction of amoebic thioredoxins and S-nitrosothiols. In addition, the enzyme exhibited NAD(P)H dependent oxidase activity, which generates hydrogen peroxide from molecular oxygen. The enzyme can reduce compounds like methylene blue, quinones, ferricyanide or nitro-derivatives; all alternative substrates displaying a relative high capacity to inhibit disulfide reductase activity of EhTRXR. CONCLUSIONS AND GENERAL SIGNIFICANCE: Interestingly, EhTRXR exhibited kinetic and structural properties that differ from other low molecular weight TRXR. The TRX system could play an important role in the parasite defense against reactive species. The latter should be critical during the extra intestinal phase of the amoebic infection. So far we know, this is the first in depth characterization of EhTRXR activity and functionality.


Assuntos
Entamoeba histolytica/enzimologia , Peróxido de Hidrogênio/metabolismo , S-Nitrosotióis/química , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Cinética , NAD/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , NADP/metabolismo , Oxirredução , Estresse Oxidativo
9.
Int J Mol Sci ; 14(4): 8073-92, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23584025

RESUMO

Adaptation to aerobic life leads organisms to sense reactive oxygen species and use the signal for coordination of the entire metabolism. Glycolysis in plants is a particular network where specific steps, like oxidation of glyceraldehydes-3-phosphate (Ga3P), are critical in order for it to function. The triose-phosphate can be converted into 3-phosphoglycerate through the phosphorylating Ga3P dehydrogenase (Ga3PDHase, EC 1.2.1.12) producing ATP and NADH, or via the non-phosphorylating enzyme (np-Ga3PDHase; EC 1.2.1.9) generating NADPH. In this work we found redox regulation to be a posttranslational mechanism allowing the fine-tuning of the triose-phosphate fate. Both enzymes were inactivated after oxidation by reactive oxygen and nitrogen species. Kinetic studies determined that Ga3PDHase is marked (63-fold) more sensitive to oxidants than np-Ga3PDHase. Thioredoxin-h reverted the oxidation of both enzymes (although with differences between them), suggesting a physiological redox regulation. The results support a metabolic scenario where the cytosolic triose-phosphate dehydrogenases are regulated under changeable redox conditions. This would allow coordinate production of NADPH or ATP through glycolysis, with oxidative signals triggering reducing power synthesis in the cytosol. The NADPH increment would favor antioxidant responses to cope with the oxidative situation, while the thioredoxin system would positively feedback NADPH production by maintaining np-Ga3PDHase at its reduced active state.


Assuntos
Citosol/metabolismo , Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/metabolismo , Gliceraldeído 3-Fosfato/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Células Vegetais/metabolismo , Proteínas de Plantas/metabolismo , Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Glicólise , Cinética , Redes e Vias Metabólicas , Oxirredução , Proteínas de Plantas/genética , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Triticum/citologia , Triticum/genética , Triticum/metabolismo
10.
Int J Mol Sci ; 14(5): 9703-21, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23648478

RESUMO

In bacteria, glycogen or oligosaccharide accumulation involves glucose-1-phosphate partitioning into either ADP-glucose (ADP-Glc) or UDP-Glc. Their respective synthesis is catalyzed by allosterically regulated ADP-Glc pyrophosphorylase (EC 2.7.7.27, ADP-Glc PPase) or unregulated UDP-Glc PPase (EC 2.7.7.9). In this work, we characterized the UDP-Glc PPase from Streptococcus mutans. In addition, we constructed a chimeric protein by cutting the C-terminal domain of the ADP-Glc PPase from Escherichia coli and pasting it to the entire S. mutans UDP-Glc PPase. Both proteins were fully active as UDP-Glc PPases and their kinetic parameters were measured. The chimeric enzyme had a slightly higher affinity for substrates than the native S. mutans UDP-Glc PPase, but the maximal activity was four times lower. Interestingly, the chimeric protein was sensitive to regulation by pyruvate, 3-phosphoglyceric acid and fructose-1,6-bis-phosphate, which are known to be effectors of ADP-Glc PPases from different sources. The three compounds activated the chimeric enzyme up to three-fold, and increased the affinity for substrates. This chimeric protein is the first reported UDP-Glc PPase with allosteric regulatory properties. In addition, this is a pioneer work dealing with a chimeric enzyme constructed as a hybrid of two pyrophosphorylases with different specificity toward nucleoside-diphospho-glucose and our results turn to be relevant for a deeper understanding of the evolution of allosterism in this family of enzymes.


Assuntos
Escherichia coli/enzimologia , Glucose-1-Fosfato Adenililtransferase/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/metabolismo , Streptococcus mutans/enzimologia , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Clonagem Molecular , Escherichia coli/química , Escherichia coli/genética , Glucose-1-Fosfato Adenililtransferase/química , Glucose-1-Fosfato Adenililtransferase/genética , Glucofosfatos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Streptococcus mutans/química , Streptococcus mutans/genética , UTP-Glucose-1-Fosfato Uridililtransferase/química , UTP-Glucose-1-Fosfato Uridililtransferase/genética
11.
Rev Invest Clin ; 65 Suppl 2: s5-27, 2013 Jun.
Artigo em Espanhol | MEDLINE | ID: mdl-24459777

RESUMO

Non-Hodgkin lymphoma comprises a heterogeneous group of haematological malignancies, classified according to their clinic, anatomic-pathological features and, lately, to their molecular biomarkers. Despite the therapeutic advances, nearly half of the patients will die because of this disease. The new diagnostic tools have been the cornerstone to design recent therapy targets, which must be included in the current treatment guidelines of this sort of neoplasms by means of clinical trials and evidence-based medicine. In the face of poor diagnoses devices in most of the Mexican hospitals, we recommend the present diagnose stratification, and treatment guidelines for non-Hodgkin lymphoma, based on evidence. They include the latest and most innovative therapeutic approaches, as well as specific recommendations for hospitals with limited framework and therapy resources.


Assuntos
Linfoma não Hodgkin/diagnóstico , Linfoma não Hodgkin/terapia , Humanos , México
12.
Front Chem ; 11: 1176537, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090251

RESUMO

The phosphorolysis of cello-oligosaccharides is a critical process played in the rumen by Ruminococcus albus to degrade cellulose. Cellodextrins, made up of a few glucosyl units, have gained lots of interest by their potential applications. Here, we characterized a cellobiose phosphorylase (RalCBP) and a cellodextrin phosphorylase (RalCDP) from R. albus 8. This latter was further analyzed in detail by constructing a truncated mutant (Ral∆N63CDP) lacking the N-terminal domain and a chimeric protein by fusing a CBM (RalCDP-CBM37). RalCBP showed a typical behavior with high activity on cellobiose. Instead, RalCDP extended its activity to longer soluble or insoluble cello-oligosaccharides. The catalytic efficiency of RalCDP was higher with cellotetraose and cellopentaose as substrates for both reaction directions. Concerning properties of Ral∆N63CDP, results support roles for the N-terminal domain in the conformation of the homo-dimer and conferring the enzyme the capacity to catalyze the phosphorolytic reaction. This mutant exhibited reduced affinity toward phosphate and increased to glucose-1-phosphate. Further, the CBM37 module showed functionality when fused to RalCDP, as RalCDP-CBM37 exhibited an enhanced ability to use insoluble cellulosic substrates. Data obtained from this enzyme's binding parameters to cellulosic polysaccharides agree with the kinetic results. Besides, studies of synthesis and phosphorolysis of cello-saccharides at long-time reactions served to identify the utility of these enzymes. While RalCDP produces a mixture of cello-oligosaccharides (from cellotriose to longer oligosaccharides), the impaired phosphorolytic activity makes Ral∆N63CDP lead mainly toward the synthesis of cellotetraose. On the other hand, RalCDP-CBM37 remarks on the utility of obtaining glucose-1-phosphate from cellulosic compounds.

13.
Biochim Biophys Acta Gen Subj ; 1867(12): 130489, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37827204

RESUMO

BACKGROUND: Entamoeba histolytica, an intestinal parasitic protozoan that usually lives and multiplies within the human gut, is the causative agent of amoebiasis. To date, de novo glutathione biosynthesis and its associated enzymes have not been identified in the parasite. Cysteine has been proposed to be the main intracellular thiol. METHODS: Using bioinformatics tools to search for glutaredoxin homologs in the E. histolytica genome database, we identified a coding sequence for a putative Grx-like small protein (EhGLSP) in the E. histolytica HM-1:IMSS genome. We produced the recombinant protein and performed its biochemical characterization. RESULTS: Through in vitro experiments, we observed that recombinant EhGLSP could bind GSH and L-Cys as ligands. However, the protein exhibited very low GSH-dependent disulfide reductase activity. Interestingly, via UV-Vis spectroscopy and chemical analysis, we detected that recombinant EhGLSP (freshly purified from Escherichia coli cells by IMAC) was isolated together with a redox-labile [FeS] bio-inorganic complex, suggesting that this protein could have some function linked to the metabolism of this cofactor. Western blotting showed that EhGLSP protein levels were modulated in E. histolytica cells exposed to exogenous oxidative species and metronidazole, suggesting that this protein cooperates with the antioxidant mechanisms of this parasite. CONCLUSIONS AND GENERAL SIGNIFICANCE: Our findings support the existence of a new metabolic actor in this pathogen. To the best of our knowledge, this is the first report on this protein class in E. histolytica.


Assuntos
Entamoeba histolytica , Parasitos , Animais , Humanos , Entamoeba histolytica/genética , Entamoeba histolytica/metabolismo , Parasitos/metabolismo , Anaerobiose , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Proteínas de Protozoários/metabolismo
14.
Biochimie ; 208: 117-128, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36586565

RESUMO

Endo-ß-1,3-glucanases from several organisms have attracted much attention in recent years because of their capability for in vitro degrading ß-1,3-glucan as a critical step for both biofuels production and short-chain oligosaccharides synthesis. In this study, we biochemically characterized a putative endo-ß-1,3-glucanase (EgrGH64) belonging to the family GH64 from the single-cell protist Euglena gracilis. The gene coding for the enzyme was heterologously expressed in a prokaryotic expression system supplemented with 3% (v/v) ethanol to optimize the recombinant protein right folding. Thus, the produced enzyme was highly purified by immobilized-metal affinity and gel filtration chromatography. The enzymatic study demonstrated that EgrGH64 could hydrolyze laminarin (KM 23.5 mg ml-1,kcat 1.20 s-1) and also, but with less enzymatic efficiency, paramylon (KM 20.2 mg ml-1,kcat 0.23 ml mg-1 s-1). The major product of the hydrolysis of both substrates was laminaripentaose. The enzyme could also use ramified ß-glucan from the baker's yeast cell wall as a substrate (KM 2.10 mg ml-1, kcat 0.88 ml mg-1 s-1). This latter result, combined with interfacial kinetic analysis evidenced a protein's greater efficiency for the yeast polysaccharide, and a higher number of hydrolysis sites in the ß-1,3/ß-1,6-glucan. Concurrently, the enzyme efficiently inhibited the fungal growth when used at 1.0 mg/mL (15.4 µM). This study contributes to assigning a correct function and determining the enzymatic specificity of EgrGH64, which emerges as a relevant biotechnological tool for processing ß-glucans.


Assuntos
Euglena gracilis , Cinética , Polissacarídeos/metabolismo , Hidrólise , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
15.
Res Vet Sci ; 155: 69-75, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36641975

RESUMO

Visceral leishmaniasis is a zoonotic infectious disease with a severe impact on humans and animals. Infection is transmitted by phlebotomine sand flies. The dogs are main reservoir for human infection. A rapid and accurate diagnosis of canine visceral leishmaniasis is essential for an efficient surveillance program. The aim of this study was to assess the performance of a rapid immunochromatographic strip test based on functionalized colored particles and a new recombinant antigenic protein, as a visual "in situ" method for the diagnosis of canine visceral leishmaniasis. The results were evaluated using an in-house ELISA assay with the same antigen. Both tests produced concordant results and the immunochromatographic strip test showed good diagnostic sensitivity (98%) and specificity (95%). Finally, meta-analysis was used to compare the sensitivity and specificity of the here developed test with the results of commercial immunochromatographic strip tests obtained from literature.


Assuntos
Doenças do Cão , Leishmania infantum , Leishmaniose Visceral , Cães , Animais , Humanos , Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/veterinária , Microesferas , Antígenos de Protozoários , Imunoensaio/veterinária , Imunoensaio/métodos , Ensaio de Imunoadsorção Enzimática/veterinária , Ensaio de Imunoadsorção Enzimática/métodos , Sensibilidade e Especificidade , Doenças do Cão/diagnóstico , Doenças do Cão/epidemiologia
16.
Biochimie ; 213: 190-204, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37423556

RESUMO

Trypanosoma cruzi is the causal agent of Chagas Disease and is a unicellular parasite that infects a wide variety of mammalian hosts. The parasite exhibits auxotrophy by L-Met; consequently, it must be acquired from the extracellular environment of the host, either mammalian or invertebrate. Methionine (Met) oxidation produces a racemic mixture (R and S forms) of methionine sulfoxide (MetSO). Reduction of L-MetSO (free or protein-bound) to L-Met is catalyzed by methionine sulfoxide reductases (MSRs). Bioinformatics analyses identified the coding sequence for a free-R-MSR (fRMSR) enzyme in the genome of T. cruzi Dm28c. Structurally, this enzyme is a modular protein with a putative N-terminal GAF domain linked to a C-terminal TIP41 motif. We performed detailed biochemical and kinetic characterization of the GAF domain of fRMSR in combination with mutant versions of specific cysteine residues, namely, Cys12, Cys98, Cys108, and Cys132. The isolated recombinant GAF domain and full-length fRMSR exhibited specific catalytic activity for the reduction of free L-Met(R)SO (non-protein bound), using tryparedoxins as reducing partners. We demonstrated that this process involves two Cys residues, Cys98 and Cys132. Cys132 is the essential catalytic residue on which a sulfenic acid intermediate is formed. Cys98 is the resolutive Cys, which forms a disulfide bond with Cys132 as a catalytic step. Overall, our results provide new insights into redox metabolism in T. cruzi, contributing to previous knowledge of L-Met metabolism in this parasite.


Assuntos
Metionina Sulfóxido Redutases , Trypanosoma cruzi , Metionina Sulfóxido Redutases/genética , Metionina Sulfóxido Redutases/química , Metionina Sulfóxido Redutases/metabolismo , Trypanosoma cruzi/genética , Oxirredução , Cisteína/química , Metionina/metabolismo
17.
Biochimie ; 197: 144-159, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35217125

RESUMO

Thiol redox proteins and low molecular mass thiols have essential functions in maintaining cellular redox balance in almost all living organisms. In the pathogenic bacterium Leptospira interrogans, several redox components have been described, namely, typical 2-Cys peroxiredoxin, a functional thioredoxin system, glutathione synthesis pathway, and methionine sulfoxide reductases. However, until now, information about proteins linked to GSH metabolism has not been reported in this pathogen. Glutaredoxins (Grxs) are GSH-dependent oxidoreductases that regulate and maintain the cellular redox state together with thioredoxins. This work deals with recombinant production at a high purity level, biochemical characterization, and detailed kinetic and structural study of the two Grxs (Lin1CGrx and Lin2CGrx) identified in L. interrogans serovar Copenhageni strain Fiocruz L1-130. Both recombinant LinGrxs exhibited the classical in vitro GSH-dependent 2-hydroxyethyl disulfide and dehydroascorbate reductase activity. Strikingly, we found that Lin2CGrx could serve as a substrate of methionine sulfoxide reductases A1 and B from L. interrogans. Distinctively, only recombinant Lin1CGrx contained a [2Fe2S] cluster confirming a homodimeric structure. The functionality of both LinGrxs was assessed by yeast complementation in null grx mutants, and both isoforms were able to rescue the mutant phenotype. Finally, our data suggest that protein glutathionylation as a post-translational modification process is present in L. interrogans. As a whole, our results support the occurrence of two new redox actors linked to GSH metabolism and iron homeostasis in L. interrogans.


Assuntos
Glutarredoxinas , Leptospira interrogans , Glutarredoxinas/química , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Leptospira interrogans/genética , Leptospira interrogans/metabolismo , Metionina Sulfóxido Redutases/metabolismo , Oxirredução , Compostos de Sulfidrila/química , Tiorredoxinas/metabolismo , Tolueno/análogos & derivados
18.
Biochim Biophys Acta Proteins Proteom ; 1869(2): 140575, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33242654

RESUMO

BACKGROUND: Methionine (Met) oxidation leads to a racemic mixture of R and S forms of methionine sulfoxide (MetSO). Methionine sulfoxide reductases (Msr) are enzymes that can reduce specifically each isomer of MetSO, both free and protein-bound. The Met oxidation could change the structure and function of many proteins, not only of those redox-related but also of others involved in different metabolic pathways. Until now, there is no information about the presence or function of Msrs enzymes in Leptospira interrogans. METHODS: We identified genes coding for putative MsrAs (A1 and A2) and MsrB in L. interrogans serovar Copenhageni strain Fiocruz L1-130 genome project. From these, we obtained the recombinant proteins and performed their functional characterization. RESULTS: The recombinant L. interrogans MsrB catalyzed the reduction of Met(R)SO using glutaredoxin and thioredoxin as reducing substrates and behaves like a 1-Cys Msr (without resolutive Cys residue). It was able to partially revert the in vitro HClO-dependent inactivation of L. interrogans catalase. Both recombinant MsrAs reduced Met(S)SO, being the recycle mediated by the thioredoxin system. LinMsrAs were more efficient than LinMsrB for free and protein-bound MetSO reduction. Besides, LinMsrAs are enzymes involving a Cys triad in their catalytic mechanism. LinMsrs showed a dual localization, both in cytoplasm and periplasm. CONCLUSIONS AND GENERAL SIGNIFICANCE: This article brings new knowledge about redox metabolism in L. interrogans. Our results support the occurrence of a metabolic pathway involved in the critical function of repairing oxidized macromolecules in this pathogen.


Assuntos
Citoplasma/química , Leptospira interrogans/genética , Metionina Sulfóxido Redutases/genética , Metionina/metabolismo , Sequência de Aminoácidos/genética , Catálise , Citoplasma/enzimologia , Genoma Bacteriano/genética , Humanos , Leptospira interrogans/enzimologia , Metionina/química , Metionina/genética , Metionina Sulfóxido Redutases/química , Metionina Sulfóxido Redutases/ultraestrutura , Oxirredução , Homologia de Sequência de Aminoácidos , Estereoisomerismo , Especificidade por Substrato
19.
Biochimie ; 184: 125-131, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33675853

RESUMO

Euglena gracilis is a eukaryotic single-celled and photosynthetic organism grouped under the kingdom Protista. This phytoflagellate can accumulate the carbon photoassimilate as a linear ß-1,3-glucan chain called paramylon. This storage polysaccharide can undergo degradation to provide glucose units to obtain ATP and reducing power both in aerobic and anaerobic growth conditions. Our group has recently characterized an essential enzyme for accumulating the polysaccharide, the UDP-glucose pyrophosphorylase (Biochimie vol 154, 2018, 176-186), which catalyzes the synthesis of UDP-glucose (the substrate for paramylon synthase). Additionally, the identification of nucleotide sequences coding for putative UDP-sugar pyrophosphorylases suggests the occurrence of an alternative source of UDP-glucose. In this study, we demonstrate the active involvement of both pyrophosphorylases in paramylon accumulation. Using techniques of single and combined knockdown of transcripts coding for these proteins, we evidenced a substantial decrease in the polysaccharide synthesis from 39 ± 7 µg/106 cells determined in the control at day 21st of growth. Thus, the paramylon accumulation in Euglena gracilis cells decreased by 60% and 30% after a single knockdown of the expression of genes coding for UDP-glucose pyrophosphorylase and UDP-sugar pyrophosphorylase, respectively. Besides, the combined knockdown of both genes resulted in a ca. 65% reduction in the level of the storage polysaccharide. Our findings indicate the existence of a physiological dependence between paramylon accumulation and the partitioning of sugar nucleotides into other metabolic routes, including the Leloir pathway's functionality in Euglena gracilis.


Assuntos
Metabolismo dos Carboidratos , Euglena gracilis , Genética Reversa , Euglena gracilis/genética , Euglena gracilis/metabolismo , Glucanos/biossíntese , Glucanos/genética
20.
Arch Microbiol ; 192(2): 103-14, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20035319

RESUMO

Leptospira interrogans synthesizes a range of mannose-containing glycoconjugates relevant for its virulence. A prerequisite in the synthesis is the availability of the GDP-mannose, produced from mannose-1-phosphate and GTP in a reaction catalyzed by GDP-mannose pyrophosphorylase. The gene coding for a putative enzyme in L. interrogans was expressed in Escherichia coli BL21(DE3). The identity of this enzyme was confirmed by electrospray-mass spectroscopy, Edman sequencing and immunological assays. Gel filtration chromatography showed that the dimeric form of the enzyme is catalytically active and stable. The recombinant protein was characterized as a mannose-1-phosphate guanylyltransferase. S (0.5) for the substrates were determined both in GDP-mannose pyrophosphorolysis: 0.20 mM (GDP-mannose), 0.089 mM (PPi), and 0.47 mM; and in GDP-mannose synthesis: 0.24 mM (GTP), 0.063 mM (mannose-1-phosphate), and 0.45 mM (Mg(2+)). The enzyme was able to produce GDP-mannose, IDP-mannose, UDP-mannose and ADP-glucose. We obtained a structural model of the enzyme using as a template the crystal structure of mannose-1-phosphate guanylyltransferase from Thermus thermophilus HB8. Binding of substrates and cofactor in the model agree with the pyrophosphorylases reaction mechanism. Our studies provide insights into the structure of a novel molecular target, which could be useful for detection of leptospirosis and for the development of anti-leptospiral drugs.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Leptospira interrogans/enzimologia , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Adenosina Difosfato Glucose/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Western Blotting , Cromatografia em Gel , Guanosina Difosfato Manose/metabolismo , Manosefosfatos/metabolismo , Dados de Sequência Molecular , Nucleotidiltransferases/genética , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato , Açúcares de Uridina Difosfato/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa