Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Carcinogenesis ; 38(8): 847-858, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28535183

RESUMO

Hepatocellular cancer is the most common type of primary liver cancer. Cirrhosis is the main risk factor that generates this malady. It has been proven that caloric restriction protocols and restricted feeding schedules are protective in experimental carcinogenic models. We tested the influence of a time-caloric restriction protocol (2 h of food access during the daytime for 18 weeks) in an experimental model of cirrhosis-hepatocarcinoma produced by weekly administration of diethylnitrosamine. Our results indicate that time-caloric restriction reduced hepatomegaly and prevented the increase in blood leukocytes promoted by diethylnitrosamine. Strikingly, time-caloric restriction preserved functional and histological characteristics of the liver in fibrotic areas compared to the cirrhotic areas of the Ad Libitum-fed group. Tumoural masses in the restricted group were well differentiated; consider a neoplastic or early stage of HCC. However, time-caloric restriction enhanced collagen deposits. With regard to the cancerous process, food restriction prevented systemic inflammation and an increase in carcinoembryonic antigen, and it favoured the occurrence of diffuse multinodular tumours. Histologically, it prevented hepatocyte inflammation response, the regenerative process, and neoplastic transformation. Time-caloric restriction stimulated circadian synchronization in fibrotic and cancerous liver sections, and it increased BMAL1 clock protein levels. We conclude that time-caloric restriction prevents fibrosis from progressing into cirrhosis, thus avoiding chronic inflammation and regenerative processes. It also prevents, probably through circadian entrainment and caloric restriction, the neoplastic transformation of tumoural lesions induced by diethylnitrosamine.


Assuntos
Restrição Calórica , Carcinoma Hepatocelular/metabolismo , Cirrose Hepática/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/patologia , Transformação Celular Neoplásica/genética , Dietilnitrosamina/toxicidade , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/complicações , Cirrose Hepática/patologia , Neoplasias Hepáticas Experimentais/complicações , Neoplasias Hepáticas Experimentais/patologia , Ratos
2.
Molecules ; 22(10)2017 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-28991196

RESUMO

Phaseolus acutifolius (Tepary bean) lectins have been studied as cytotoxic molecules on colon cancer cells. The toxicological profile of a Tepary bean lectin fraction (TBLF) has shown low toxicity in experimental animals; exhibiting anti-nutritional effects such as a reduction in body weight gain and a decrease in food intake when using a dose of 50 mg/kg on alternate days for six weeks. Taking this information into account, the focus of this work was to evaluate the effect of the TBLF on colon cancer using 1,2-dimethylhydrazine (DMH) or azoxy-methane/dextran sodium sulfate (AOM/DSS) as colon cancer inductors. Rats were treated with DMH or AOM/DSS and then administered with TBFL (50 mg/kg) for six weeks. TBLF significantly decreased early tumorigenesis triggered by DMH by 70%, but without any evidence of an apoptotic effect. In an independent experiment, AOM/DSS was used to generate aberrant cryptic foci, which decreased by 50% after TBLF treatment. TBLF exhibited antiproliferative and proapoptotic effects related to a decrease of the signal transduction pathway protein Akt in its activated form and an increase of caspase 3 activity, but not to p53 activation. Further studies will deepen our knowledge of specific apoptosis pathways and cellular stress processes such as oxidative damage.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Phaseolus/química , Lectinas de Plantas/farmacologia , Células 3T3 , Animais , Antineoplásicos Fitogênicos/química , Apoptose , Caspase 3/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/patologia , Masculino , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Lectinas de Plantas/química , Ratos Sprague-Dawley , Sementes/química , Transdução de Sinais
3.
Toxicol Rep ; 2: 63-69, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-28962338

RESUMO

Our previous studies have shown that a lectin rich fraction (TBLF) extracted from Tepary bean seeds differentially inhibits cancer cells proliferation in vitro. Before testing the in vivo anticancer effect, the acute and subchronic toxicological assays in rats were conducted, where an oral dose of 50 mg/body weight kg was determined as the NOAEL. This study evaluated the resistance to digestion and complete blood count (CBC) after 24 h of the orally administered 50 mg/kg TBLF. The digestion resistance test showed lectins activity retention after 72 h and the CBC study showed a high level of eosinophils, suggesting an allergic-like response. Tolerability was assayed after 6 weeks of treatment by dosing with an intragastric cannula every third day per week. It was observed a transient reduction in food intake and body weight in the first weeks, resulting in body weight gain reduction of 10% respect to the control group at the end of the study. Additionally, organs weight, histopathological analysis and blood markers for nutritional status and for liver, pancreas and renal function were not affected. Our results suggest that 50 mg/kg TBLF administered by oral route, exhibit no toxicity in rats and it was well tolerated. Further studies will focus on long-term studies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa