Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 631(8019): 125-133, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38867050

RESUMO

Malaria-causing protozoa of the genus Plasmodium have exerted one of the strongest selective pressures on the human genome, and resistance alleles provide biomolecular footprints that outline the historical reach of these species1. Nevertheless, debate persists over when and how malaria parasites emerged as human pathogens and spread around the globe1,2. To address these questions, we generated high-coverage ancient mitochondrial and nuclear genome-wide data from P. falciparum, P. vivax and P. malariae from 16 countries spanning around 5,500 years of human history. We identified P. vivax and P. falciparum across geographically disparate regions of Eurasia from as early as the fourth and first millennia BCE, respectively; for P. vivax, this evidence pre-dates textual references by several millennia3. Genomic analysis supports distinct disease histories for P. falciparum and P. vivax in the Americas: similarities between now-eliminated European and peri-contact South American strains indicate that European colonizers were the source of American P. vivax, whereas the trans-Atlantic slave trade probably introduced P. falciparum into the Americas. Our data underscore the role of cross-cultural contacts in the dissemination of malaria, laying the biomolecular foundation for future palaeo-epidemiological research into the impact of Plasmodium parasites on human history. Finally, our unexpected discovery of P. falciparum in the high-altitude Himalayas provides a rare case study in which individual mobility can be inferred from infection status, adding to our knowledge of cross-cultural connectivity in the region nearly three millennia ago.


Assuntos
DNA Antigo , Genoma Mitocondrial , Genoma de Protozoário , Malária , Plasmodium , Feminino , Humanos , Masculino , Altitude , América/epidemiologia , Ásia/epidemiologia , Evolução Biológica , Resistência à Doença/genética , DNA Antigo/análise , Europa (Continente)/epidemiologia , Genoma Mitocondrial/genética , Genoma de Protozoário/genética , História Antiga , Malária/parasitologia , Malária/história , Malária/transmissão , Malária/epidemiologia , Malária Falciparum/epidemiologia , Malária Falciparum/história , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Malária Vivax/epidemiologia , Malária Vivax/história , Malária Vivax/parasitologia , Malária Vivax/transmissão , Plasmodium/genética , Plasmodium/classificação , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Plasmodium malariae/genética , Plasmodium malariae/isolamento & purificação , Plasmodium vivax/genética , Plasmodium vivax/isolamento & purificação
2.
Am J Hum Biol ; 28(6): 857-867, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27265853

RESUMO

OBJECTIVES: The ancient Chachapoya were an aggregate of several ethnic groups that shared a common language, religion, and material culture. They inhabited a territory at the juncture of the Andes and the Amazon basin. Their position between those ecozones most likely influenced their genetic composition. We attempted to better understand their population history by assessing the contemporary genetic diversity in the Chachapoya and three of their immediate neighbors (Huancas, Jivaro, and Cajamarca). We inferred signatures of demographic history and genetic affinities, and contrasted the findings with data from other populations on local and continental scales. METHODS: We studied mitochondrial DNA (mtDNA; hypervariable segment [HVSI and HVSII]) and Y chromosome (23 short tandem repeats (STRs)) marker data in 382 modern individuals. We used Sanger sequencing for mtDNA and a commercially available kit for Y-chromosomal STR typing. RESULTS: The Chachapoya had affinities with various populations of Andean and Amazonian origin. When examining the Native American component, the Chachapoya displayed high levels of genetic diversity. Together with other parameters, for example, large Tajima's D and Fu's Fs, the data indicated no drastic reduction of the population size in the past. CONCLUSION: The high level of diversity in the Chachapoya, the lack of evidence of drift in the past, and genetic affinities with a broad range of populations in the Americas reflects an intricate population history in the region. The new genetic data from the Chachapoya indeed seems to point to a genetic complexity that is not yet resolved but beginning to be elucidated. Am. J. Hum. Biol. 28:857-867, 2016. © 2016Wiley Periodicals, Inc.


Assuntos
Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Variação Genética , Indígenas Sul-Americanos/genética , Haplótipos , Humanos , Repetições de Microssatélites/genética , Peru , Análise de Sequência de DNA
3.
Forensic Sci Int Genet ; 52: 102487, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33640735

RESUMO

Autosomal DNA data from Peru for human identity testing purposes are scarce in the scientific literature, which hinders obtaining an appropriate portrait of the genetic variation of the resident populations. In this study we genetically characterize five populations from the Northeastern Peruvian Andes (Chachapoyas, Awajún, Wampís, Huancas and Cajamarca). Autosomal short tandem repeat (aSTR) and identity informative single nucleotide polymorphism (iiSNP) data from a total of 233 unrelated individuals are provided, and forensic genetic parameters are calculated for each population and for the combined set Northeastern Peruvian Andes. After correction for multiple testing in the whole dataset of the Northeastern Peruvian Andes, the only departure from Hardy-Weinberg equilibrium was observed in locus rs2111980. Twenty one out of 27 aSTR loci exhibited an increased number of alleles due to sequence variation in the repeat motif and flanking regions. For iiSNPs 33% of the loci displayed flanking region variation. The combined random match probability (RMP), assuming independence of all loci (aSTRs and iiSNPs), in the Chachapoyas, the population with the largest samples size (N = 172), was 8.14 × 10-62 for length-based data while for sequence-based was 4.15 × 10-67. In the merged dataset (Northeastern Peruvian Andes; N = 233), the combined RMP when including all markers were 2.96 × 10-61 (length-based) and 3.21 × 10-66 (sequence-based). These new data help to fill up some of the gaps in the genetic canvas of South America and provide essential length- and sequence-based background information for other forensic genetic studies in Peru.


Assuntos
Etnicidade/genética , Genética Populacional , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Impressões Digitais de DNA , Frequência do Gene , Humanos , Peru
4.
Science ; 374(6564): 182-188, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34618559

RESUMO

Hepatitis B virus (HBV) has been infecting humans for millennia and remains a global health problem, but its past diversity and dispersal routes are largely unknown. We generated HBV genomic data from 137 Eurasians and Native Americans dated between ~10,500 and ~400 years ago. We date the most recent common ancestor of all HBV lineages to between ~20,000 and 12,000 years ago, with the virus present in European and South American hunter-gatherers during the early Holocene. After the European Neolithic transition, Mesolithic HBV strains were replaced by a lineage likely disseminated by early farmers that prevailed throughout western Eurasia for ~4000 years, declining around the end of the 2nd millennium BCE. The only remnant of this prehistoric HBV diversity is the rare genotype G, which appears to have reemerged during the HIV pandemic.


Assuntos
Doenças Transmissíveis Emergentes/história , Evolução Molecular , Vírus da Hepatite B/classificação , Vírus da Hepatite B/genética , Hepatite B/história , América , Ásia , Povo Asiático , Doenças Transmissíveis Emergentes/virologia , Europa (Continente) , Variação Genética , Genômica , Hepatite B/virologia , História Antiga , Humanos , Paleontologia , Filogenia , População Branca , Indígena Americano ou Nativo do Alasca
5.
PLoS One ; 15(12): e0244497, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33382772

RESUMO

Many native populations in South America have been severely impacted by two relatively recent historical events, the Inca and the Spanish conquest. However decisive these disruptive events may have been, the populations and their gene pools have been shaped markedly also by the history prior to the conquests. This study focuses mainly on the Chachapoya peoples that inhabit the montane forests on the eastern slopes of the northern Peruvian Andes, but also includes three distinct neighboring populations (the Jívaro, the Huancas and the Cajamarca). By assessing mitochondrial, Y-chromosomal and autosomal diversity in the region, we explore questions that have emerged from archaeological and historical studies of the regional culture (s). These studies have shown, among others, that Chachapoyas was a crossroads for Coast-Andes-Amazon interactions since very early times. In this study, we examine the following questions: 1) was there pre-Hispanic genetic population substructure in the Chachapoyas sample? 2) did the Spanish conquest cause a more severe population decline on Chachapoyan males than on females? 3) can we detect different patterns of European gene flow in the Chachapoyas region? and, 4) did the demographic history in the Chachapoyas resemble the one from the Andean area? Despite cultural differences within the Chachapoyas region as shown by archaeological and ethnohistorical research, genetic markers show no significant evidence for past or current population substructure, although an Amazonian gene flow dynamic in the northern part of this territory is suggested. The data also indicates a bottleneck c. 25 generations ago that was more severe among males than females, as well as divergent population histories for populations in the Andean and Amazonian regions. In line with previous studies, we observe high genetic diversity in the Chachapoyas, despite the documented dramatic population declines. The diverse topography and great biodiversity of the northeastern Peruvian montane forests are potential contributing agents in shaping and maintaining the high genetic diversity in the Chachapoyas region.


Assuntos
Biodiversidade , Fluxo Gênico , Genética Populacional , Indígenas Sul-Americanos/genética , Dinâmica Populacional/história , Arqueologia , Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Feminino , Marcadores Genéticos , História do Século XV , História do Século XVI , Humanos , Masculino , Fatores Sexuais , América do Sul
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa