Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 79(4): 1309-15, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23241976

RESUMO

The ability to produce diacetyl from pyruvate and l-serine was studied in various strains of Pediococcus pentosaceus and Pediococcus acidilactici isolated from cheese. After being incubated on both substrates, only P. pentosaceus produced significant amounts of diacetyl. This property correlated with measurable serine dehydratase activity in cell extracts. A gene encoding the serine dehydratase (dsdA) was identified in P. pentosaceus, and strains that showed no serine dehydratase activity carried mutations that rendered the gene product inactive. A functional dsdA was cloned from P. pentosaceus FAM19132 and expressed in Escherichia coli. The purified recombinant enzyme catalyzed the formation of pyruvate from L- and D-serine and was active at low pH and elevated NaCl concentrations, environmental conditions usually present in cheese. Analysis of the amino acid profiles of culture supernatants from dsdA wild-type and dsdA mutant strains of P. pentosaceus did not show differences in serine levels. In contrast, P. acidilactici degraded serine. Moreover, this species also catabolized threonine and produced alanine and α-aminobutyrate.


Assuntos
Pediococcus/metabolismo , Serina/metabolismo , Queijo/microbiologia , Clonagem Molecular , Diacetil/metabolismo , Estabilidade Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Expressão Gênica , Concentração de Íons de Hidrogênio , L-Serina Desidratase/genética , L-Serina Desidratase/metabolismo , Pediococcus/enzimologia , Pediococcus/genética , Pediococcus/isolamento & purificação , Ácido Pirúvico/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Cloreto de Sódio
2.
Front Microbiol ; 9: 2415, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386310

RESUMO

Milk and dairy products are rich in nutrients and are therefore habitats for various microbiomes. However, the composition of nutrients can be quite diverse, in particular among the sulfur containing amino acids. In milk, methionine is present in a 25-fold higher abundance than cysteine. Interestingly, a fraction of strains of the species L. paracasei - a flavor-enhancing adjunct culture species - can grow in medium with methionine as the sole sulfur source. In this study, we focus on genomic and evolutionary aspects of sulfur dependence in L. paracasei strains. From 24 selected L. paracasei strains, 16 strains can grow in medium with methionine as sole sulfur source. We sequenced these strains to perform gene-trait matching. We found that one gene cluster - consisting of a cysteine synthase, a cystathionine lyase, and a serine acetyltransferase - is present in all strains that grow in medium with methionine as sole sulfur source. In contrast, strains that depend on other sulfur sources do not have this gene cluster. We expanded the study and searched for this gene cluster in other species and detected it in the genomes of many bacteria species used in the food production. The comparison to these species showed that two different versions of the gene cluster exist in L. paracasei which were likely gained in two distinct events of horizontal gene transfer. Additionally, the comparison of 62 L. paracasei genomes and the two versions of the gene cluster revealed that this gene cluster is mobile within the species.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa