Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 13(8): e1006588, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28837667

RESUMO

The multifunctional NS1 protein of influenza A viruses suppresses host cellular defense mechanisms and subverts other cellular functions. We report here on a new role for NS1 in modifying cell-cell signaling via the Hedgehog (Hh) pathway. Genetic epistasis experiments and FRET-FLIM assays in Drosophila suggest that NS1 interacts directly with the transcriptional mediator, Ci/Gli1. We further confirmed that Hh target genes are activated cell-autonomously in transfected human lung epithelial cells expressing NS1, and in infected mouse lungs. We identified a point mutation in NS1, A122V, that modulates this activity in a context-dependent fashion. When the A122V mutation was incorporated into a mouse-adapted influenza A virus, it cell-autonomously enhanced expression of some Hh targets in the mouse lung, including IL6, and hastened lethality. These results indicate that, in addition to its multiple intracellular functions, NS1 also modifies a highly conserved signaling pathway, at least in part via cell autonomous activities. We discuss how this new Hh modulating function of NS1 may influence host lethality, possibly through controlling cytokine production, and how these new insights provide potential strategies for combating infection.


Assuntos
Proteínas Hedgehog/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Transdução de Sinais/fisiologia , Proteínas não Estruturais Virais/metabolismo , Animais , Drosophila , Humanos , Imuno-Histoquímica , Virus da Influenza A Subtipo H5N1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
2.
PLoS Pathog ; 13(9): e1006603, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28945820

RESUMO

Various bacterial toxins circumvent host defenses through overproduction of cAMP. In a previous study, we showed that edema factor (EF), an adenylate cyclase from Bacillus anthracis, disrupts endocytic recycling mediated by the small GTPase Rab11. As a result, cargo proteins such as cadherins fail to reach inter-cellular junctions. In the present study, we provide further mechanistic dissection of Rab11 inhibition by EF using a combination of Drosophila and mammalian systems. EF blocks Rab11 trafficking after the GTP-loading step, preventing a constitutively active form of Rab11 from delivering cargo vesicles to the plasma membrane. Both of the primary cAMP effector pathways -PKA and Epac/Rap1- contribute to inhibition of Rab11-mediated trafficking, but act at distinct steps of the delivery process. PKA acts early, preventing Rab11 from associating with its effectors Rip11 and Sec15. In contrast, Epac functions subsequently via the small GTPase Rap1 to block fusion of recycling endosomes with the plasma membrane, and appears to be the primary effector of EF toxicity in this process. Similarly, experiments conducted in mammalian systems reveal that Epac, but not PKA, mediates the activity of EF both in cell culture and in vivo. The small GTPase Arf6, which initiates endocytic retrieval of cell adhesion components, also contributes to junctional homeostasis by counteracting Rab11-dependent delivery of cargo proteins at sites of cell-cell contact. These studies have potentially significant practical implications, since chemical inhibition of either Arf6 or Epac blocks the effect of EF in cell culture and in vivo, opening new potential therapeutic avenues for treating symptoms caused by cAMP-inducing toxins or related barrier-disrupting pathologies.


Assuntos
Antígenos de Bactérias/farmacologia , Toxinas Bacterianas/farmacologia , Edema/metabolismo , Endossomos/efeitos dos fármacos , Junções Intercelulares/efeitos dos fármacos , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/metabolismo , Adenilil Ciclases/metabolismo , Animais , Caderinas/metabolismo , Linhagem Celular , Endossomos/metabolismo , Junções Intercelulares/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas rab de Ligação ao GTP/metabolismo
3.
Nature ; 467(7317): 854-8, 2010 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-20944747

RESUMO

Bacillus anthracis is the causative agent of anthrax in humans and other mammals. In lethal systemic anthrax, proliferating bacilli secrete large quantities of the toxins lethal factor (LF) and oedema factor (EF), leading to widespread vascular leakage and shock. Whereas host targets of LF (mitogen-activated protein-kinase kinases) and EF (cAMP-dependent processes) have been implicated in the initial phase of anthrax, less is understood about toxin action during the final stage of infection. Here we use Drosophila melanogaster to identify the Rab11/Sec15 exocyst, which acts at the last step of endocytic recycling, as a novel target of both EF and LF. EF reduces levels of apically localized Rab11 and indirectly blocks vesicle formation by its binding partner and effector Sec15 (Sec15-GFP), whereas LF acts more directly to reduce Sec15-GFP vesicles. Convergent effects of EF and LF on Rab11/Sec15 inhibit expression of and signalling by the Notch ligand Delta and reduce DE-cadherin levels at adherens junctions. In human endothelial cells, the two toxins act in a conserved fashion to block formation of Sec15 vesicles, inhibit Notch signalling, and reduce cadherin expression at adherens junctions. This coordinated disruption of the Rab11/Sec15 exocyst by anthrax toxins may contribute to toxin-dependent barrier disruption and vascular dysfunction during B. anthracis infection.


Assuntos
Antígenos de Bactérias/farmacologia , Bacillus anthracis , Toxinas Bacterianas/farmacologia , Endocitose/efeitos dos fármacos , Proteínas de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Junções Aderentes/metabolismo , Animais , Bacillus anthracis/química , Bacillus anthracis/patogenicidade , Caderinas , Linhagem Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo , Sinergismo Farmacológico , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Humanos , Modelos Animais , Ligação Proteica , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Vesículas Transportadoras/efeitos dos fármacos , Vesículas Transportadoras/metabolismo , Proteínas de Transporte Vesicular/metabolismo
4.
Nat Commun ; 14(1): 5587, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696787

RESUMO

CRISPR-interference (CRISPRi), a highly effective method for silencing genes in mammalian cells, employs an enzymatically dead form of Cas9 (dCas9) complexed with one or more guide RNAs (gRNAs) with 20 nucleotides (nt) of complementarity to transcription initiation sites of target genes. Such gRNA/dCas9 complexes bind to DNA, impeding transcription of the targeted locus. Here, we present an alternative gene-suppression strategy using active Cas9 complexed with truncated gRNAs (tgRNAs). Cas9/tgRNA complexes bind to specific target sites without triggering DNA cleavage. When targeted near transcriptional start sites, these short 14-15 nts tgRNAs efficiently repress expression of several target genes throughout somatic tissues in Drosophila melanogaster without generating any detectable target site mutations. tgRNAs also can activate target gene expression when complexed with a Cas9-VPR fusion protein or modulate enhancer activity, and can be incorporated into a gene-drive, wherein a traditional gRNA sustains drive while a tgRNA inhibits target gene expression.


Assuntos
Sistemas CRISPR-Cas , Drosophila melanogaster , Animais , Sistemas CRISPR-Cas/genética , Drosophila melanogaster/genética , Técnicas de Silenciamento de Genes , Proteína 9 Associada à CRISPR/genética , Clivagem do DNA , Mamíferos
5.
Cell Rep ; 42(8): 112842, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37480566

RESUMO

Development of effective therapies against SARS-CoV-2 infections relies on mechanistic knowledge of virus-host interface. Abundant physical interactions between viral and host proteins have been identified, but few have been functionally characterized. Harnessing the power of fly genetics, we develop a comprehensive Drosophila COVID-19 resource (DCR) consisting of publicly available strains for conditional tissue-specific expression of all SARS-CoV-2 encoded proteins, UAS-human cDNA transgenic lines encoding established host-viral interacting factors, and GAL4 insertion lines disrupting fly homologs of SARS-CoV-2 human interacting proteins. We demonstrate the utility of the DCR to functionally assess SARS-CoV-2 genes and candidate human binding partners. We show that NSP8 engages in strong genetic interactions with several human candidates, most prominently with the ATE1 arginyltransferase to induce actin arginylation and cytoskeletal disorganization, and that two ATE1 inhibitors can reverse NSP8 phenotypes. The DCR enables parallel global-scale functional analysis of SARS-CoV-2 components in a prime genetic model system.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , SARS-CoV-2/genética , Drosophila , Actinas , Animais Geneticamente Modificados
6.
Sci Adv ; 8(26): eabo0721, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35776792

RESUMO

Repair of double-strand breaks (DSBs) in somatic cells is primarily accomplished by error-prone nonhomologous end joining and less frequently by precise homology-directed repair preferentially using the sister chromatid as a template. Here, a Drosophila system performs efficient somatic repair of both DSBs and single-strand breaks (SSBs) using intact sequences from the homologous chromosome in a process we refer to as homologous chromosome-templated repair (HTR). Unexpectedly, HTR-mediated allelic conversion at the white locus was more efficient (40 to 65%) in response to SSBs induced by Cas9-derived nickases D10A or H840A than to DSBs induced by fully active Cas9 (20 to 30%). Repair phenotypes elicited by Nickase versus Cas9 differ in both developmental timing (late versus early stages, respectively) and the production of undesired mutagenic events (rare versus frequent). Nickase-mediated HTR represents an efficient and unanticipated mechanism for allelic correction, with far-reaching potential applications in the field of gene editing.


Assuntos
Desoxirribonuclease I , Drosophila , Alelos , Animais , Sistemas CRISPR-Cas , Cromátides
7.
Nat Commun ; 13(1): 291, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022402

RESUMO

A recurring target-site mutation identified in various pests and disease vectors alters the voltage gated sodium channel (vgsc) gene (often referred to as knockdown resistance or kdr) to confer resistance to commonly used insecticides, pyrethroids and DDT. The ubiquity of kdr mutations poses a major global threat to the continued use of insecticides as a means for vector control. In this study, we generate common kdr mutations in isogenic laboratory Drosophila strains using CRISPR/Cas9 editing. We identify differential sensitivities to permethrin and DDT versus deltamethrin among these mutants as well as contrasting physiological consequences of two different kdr mutations. Importantly, we apply a CRISPR-based allelic-drive to replace a resistant kdr mutation with a susceptible wild-type counterpart in population cages. This successful proof-of-principle opens-up numerous possibilities including targeted reversion of insecticide-resistant populations to a native susceptible state or replacement of malaria transmitting mosquitoes with those bearing naturally occurring parasite resistant alleles.


Assuntos
Alelos , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Resistência a Inseticidas/genética , Animais , Sistemas CRISPR-Cas , Culicidae , Feminino , Engenharia Genética , Inseticidas , Masculino , Mutação
8.
iScience ; 23(2): 100865, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32058973

RESUMO

Clostridium difficile infections (CDIs) cause severe and occasionally life-threatening diarrhea. Hyper-virulent strains produce CDT, a toxin that ADP-ribosylates actin monomers and inhibits actin polymerization. We created transgenic Drosophila lines expressing the catalytic subunit CDTa to investigate its interaction with host signaling pathways in vivo. When expressed in the midgut, CDTa reduces body weight and fecal output and compromises survival, suggesting severe impairment of digestive functions. At the cellular level, CDTa induces F-actin network collapse, elimination of the intestinal brush border, and disruption of intercellular junctions. We confirm toxin-dependent re-distribution of Rab11 to enterocytes' apical surface and observe suppression of CDTa phenotypes by a Dominant-Negative form of Rab11 or RNAi of the dedicated Rab11GEF Crag (DENND4). We also report that Calmodulin (Cam) is required to mediate CDTa activity. In parallel, chemical inhibition of the Cam/Calcineurin pathway by Cyclosporin A or FK506 also reduces CDTa phenotypes, potentially opening new avenues for treating CDIs.

10.
Nat Commun ; 10(1): 1640, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30967548

RESUMO

Gene-drive systems developed in several organisms result in super-Mendelian inheritance of transgenic insertions. Here, we generalize this "active genetic" approach to preferentially transmit allelic variants (allelic-drive) resulting from only a single or a few nucleotide alterations. We test two configurations for allelic-drive: one, copy-cutting, in which a non-preferred allele is selectively targeted for Cas9/guide RNA (gRNA) cleavage, and a more general approach, copy-grafting, that permits selective inheritance of a desired allele located in close proximity to the gRNA cut site. We also characterize a phenomenon we refer to as lethal-mosaicism that dominantly eliminates NHEJ-induced mutations and favors inheritance of functional cleavage-resistant alleles. These two efficient allelic-drive methods, enhanced by lethal mosaicism and a trans-generational drive process we refer to as "shadow-drive", have broad practical applications in improving health and agriculture and greatly extend the active genetics toolbox.


Assuntos
Alelos , Reparo do DNA por Junção de Extremidades/genética , Drosophila/genética , Tecnologia de Impulso Genético/métodos , Agricultura/métodos , Animais , Animais Geneticamente Modificados/genética , Sistemas CRISPR-Cas/genética , Análise Mutacional de DNA , Feminino , Edição de Genes/métodos , Padrões de Herança/genética , Masculino , Mosaicismo , RNA Guia de Cinetoplastídeos/genética
11.
Nat Rev Microbiol ; 12(9): 624-34, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25118884

RESUMO

Many bacterial and viral pathogens block or subvert host cellular processes to promote successful infection. One host protein that is targeted by invading pathogens is the small GTPase RAB11, which functions in vesicular trafficking. RAB11 functions in conjunction with a protein complex known as the exocyst to mediate terminal steps in cargo transport via the recycling endosome to cell-cell junctions, phagosomes and cellular protrusions. These processes contribute to host innate immunity by promoting epithelial and endothelial barrier integrity, sensing and immobilizing pathogens and repairing pathogen-induced cellular damage. In this Review, we discuss the various mechanisms that pathogens have evolved to disrupt or subvert RAB11-dependent pathways as part of their infection strategy.


Assuntos
Evasão da Resposta Imune , Imunidade Inata , Infecções/imunologia , Junções Intercelulares/imunologia , Proteínas rab de Ligação ao GTP/imunologia , Antígenos de Bactérias/imunologia , Bacillus anthracis/patogenicidade , Toxinas Bacterianas/imunologia , Toxina da Cólera/imunologia , Exocitose , Orthohantavírus/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Infecções/microbiologia , Fagossomos/imunologia , Transporte Proteico , Transdução de Sinais , Vibrio cholerae/patogenicidade , Proteínas rab de Ligação ao GTP/metabolismo
12.
Cell Host Microbe ; 14(3): 294-305, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-24034615

RESUMO

Cholera toxin (CT), a virulence factor elaborated by Vibrio cholerae, is sufficient to induce the severe diarrhea characteristic of cholera. The enzymatic moiety of CT (CtxA) increases cAMP synthesis in intestinal epithelial cells, leading to chloride ion (Cl(-)) efflux through the CFTR Cl(-) channel. To preserve electroneutrality and osmotic balance, sodium ions and water also flow into the intestinal lumen via a paracellular route. We find that CtxA-driven cAMP increase also inhibits Rab11/exocyst-mediated trafficking of host proteins including E-cadherin and Notch signaling components to cell-cell junctions in Drosophila, human intestinal epithelial cells, and ligated mouse ileal loops, thereby disrupting barrier function. Additionally, CtxA induces junctional damage, weight loss, and dye leakage in the Drosophila gut, contributing to lethality from live V. cholerae infection, all of which can be rescued by Rab11 overexpression. These barrier-disrupting effects of CtxA may act in parallel with Cl(-) secretion to drive the pathophysiology of cholera.


Assuntos
Toxina da Cólera/metabolismo , Células Epiteliais/fisiologia , Exossomos/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Proteínas de Junções Íntimas/antagonistas & inibidores , Junções Íntimas/fisiologia , Vibrio cholerae/fisiologia , Animais , Linhagem Celular , Cloro/metabolismo , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Drosophila , Células Epiteliais/efeitos dos fármacos , Proteínas de Ligação ao GTP/metabolismo , Humanos , Camundongos , Modelos Biológicos , Sódio/metabolismo , Análise de Sobrevida , Junções Íntimas/efeitos dos fármacos , Água/metabolismo
13.
Dis Model Mech ; 5(1): 48-61, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21979942

RESUMO

Many of the cellular mechanisms underlying host responses to pathogens have been well conserved during evolution. As a result, Drosophila can be used to deconstruct many of the key events in host-pathogen interactions by using a wealth of well-developed molecular and genetic tools. In this review, we aim to emphasize the great leverage provided by the suite of genomic and classical genetic approaches available in flies for decoding details of host-pathogen interactions; these findings can then be applied to studies in higher organisms. We first briefly summarize the general strategies by which Drosophila resists and responds to pathogens. We then focus on how recently developed genome-wide RNA interference (RNAi) screens conducted in cells and flies, combined with classical genetic methods, have provided molecular insight into host-pathogen interactions, covering examples of bacteria, fungi and viruses. Finally, we discuss novel strategies for how flies can be used as a tool to examine how specific isolated virulence factors act on an intact host.


Assuntos
Drosophila/imunologia , Drosophila/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Animais , Drosophila/genética , Drosophila/virologia , Genoma de Inseto/genética , Interações Hospedeiro-Patógeno/genética , Imunidade/imunologia , Virulência , Fatores de Virulência/metabolismo
14.
Microbes Infect ; 14(2): 97-118, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21930233

RESUMO

The anthrax toxins lethal toxin (LT) and edema toxin (ET) are essential virulence factors produced by Bacillus anthracis. These toxins act during two distinct phases of anthrax infection. During the first, prodromal phase, which is often asymptomatic, anthrax toxins act on cells of the immune system to help the pathogen establish infection. Then, during the rapidly progressing (or fulminant) stage of the disease bacteria disseminate via a hematological route to various target tissues and organs, which are typically highly vascularized. As bacteria proliferate in the bloodstream, LT and ET begin to accumulate rapidly reaching a critical threshold level that will cause death even when the bacterial proliferation is curtailed by antibiotics. During this final phase of infection the toxins cause an increase in vascular permeability and a decrease in function of target organs including the heart, spleen, kidney, adrenal gland, and brain. In this review, we examine the various biological effects of anthrax toxins, focusing on the fulminant stage of the disease and on mechanisms by which the two toxins may collaborate to cause cardiovascular collapse. We discuss normal mechanisms involved in maintaining vascular integrity and based on recent studies indicating that LT and ET cooperatively inhibit membrane trafficking to cell-cell junctions we explore several potential mechanisms by which the toxins may achieve their lethal effects. We also summarize the effects of other potential virulence factors secreted by B. anthracis and consider the role of toxic factors in the evolutionarily recent emergence of this devastating disease.


Assuntos
Antraz/patologia , Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/toxicidade , Bacillus anthracis/patogenicidade , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidade , Animais , Antraz/microbiologia , Antraz/fisiopatologia , Antígenos de Bactérias/química , Toxinas Bacterianas/química , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/patologia , Sistema Cardiovascular/fisiopatologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Junções Intercelulares/efeitos dos fármacos , Junções Intercelulares/metabolismo , Transcitose , Fatores de Virulência/metabolismo , Fatores de Virulência/toxicidade
15.
J Cell Sci ; 121(Pt 16): 2643-51, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18653542

RESUMO

Intracellular transport and processing of ligands is critical to the activation of signal transduction pathways that guide development. Star is an essential gene in Drosophila that has been implicated in the trafficking of ligands for epidermal growth factor (EGF) receptor signaling. The role of cytoplasmic motors in the endocytic and secretory pathways is well known, but the specific requirement of motors in EGF receptor transport has not been investigated. We identified Star in a screen designed to recover second-site modifiers of the dominant rough eye phenotype of the Glued mutation Gl(1). The Glued (Gl) locus encodes the p150 subunit of the dynactin complex, an activator of cytoplasmic dynein-driven motility. We show that alleles of Gl and dynein genetically interact with both Star and EGFR alleles. Similarly to mutations in Star, the Gl(1) mutation is capable of modifying the phenotypes of the EGFR mutation Ellipse. These genetic interactions suggest a model in which Star, dynactin and dynein cooperate in the trafficking of EGF ligands. In support of this model, overexpression of the cleaved, active Spitz ligand can partially bypass defective trafficking and suppress the genetic interactions. Our direct observations of live S2 cells show that export of Spitz-GFP from the endoplasmic reticulum, as well as the trafficking of Spitz-GFP vesicles, depends on both Star and dynein.


Assuntos
Proteínas de Drosophila/metabolismo , Dineínas/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Proteínas de Membrana/metabolismo , Animais , Animais Geneticamente Modificados , Células Cultivadas , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Dineínas/genética , Dineínas/fisiologia , Retículo Endoplasmático/metabolismo , Fator de Crescimento Epidérmico/genética , Epistasia Genética , Receptores ErbB/fisiologia , Olho/anatomia & histologia , Olho/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Mutagênese Insercional/fisiologia , Fenótipo , Ligação Proteica , Transporte Proteico , Retroelementos/genética , Transdução de Sinais/fisiologia
16.
Proc Natl Acad Sci U S A ; 103(9): 3244-9, 2006 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-16455799

RESUMO

Many bacterial toxins act on conserved components of essential host-signaling pathways. One consequence of this conservation is that genetic model organisms such as Drosophila melanogaster can be used for analyzing the mechanism of toxin action. In this study, we characterize the activities of two anthrax virulence factors, lethal factor (LF) and edema factor, in transgenic Drosophila. LF is a zinc metalloprotease that cleaves and inactivates most human mitogen-activated protein kinase (MAPK) kinases (MAPKKs). We found that LF similarly cleaves the Drosophila MAPK kinases Hemipterous (Hep) and Licorne in vitro. Consistent with these observations, expression of LF in Drosophila inhibited the Hep/c-Jun N-terminal kinase pathway during embryonic dorsal closure and the related process of adult thoracic closure. Epistasis experiments confirmed that LF acts at the level of Hep. We also found that LF inhibits Ras/MAPK signaling during wing development and that LF acts upstream of MAPK and downstream of Raf, consistent with LF acting at the level of Dsor. In addition, we found that edema factor, a potent adenylate cyclase, inhibits the hh pathway during wing development, consistent with the known role of cAMP-dependent PKA in suppressing the Hedgehog response. These results demonstrate that anthrax toxins function in Drosophila as they do in mammalian cells and open the way to using Drosophila as a multicellular host system for studying the in vivo function of diverse toxins and virulence factors.


Assuntos
Antígenos de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Drosophila melanogaster/metabolismo , Venenos de Víboras/metabolismo , Sequência de Aminoácidos , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Sequência Conservada , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/embriologia , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Fenótipo , Alinhamento de Sequência , Transdução de Sinais , Venenos de Víboras/química , Venenos de Víboras/genética , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
17.
Dev Dyn ; 233(4): 1315-31, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15965977

RESUMO

The activity of the TGF-alpha-like ligand Spitz in Drosophila depends on Rhomboid, a seven-transmembrane spanning protein that resides in the Golgi and acts as a serine protease to cleave Spitz, thereby releasing the soluble ligand. Several rhomboids in Drosophila have been implicated in the processing of TGF-alpha-like ligands, and consequent EGF receptor activation. The larger number of TGF-alpha-like ligands in vertebrates raises the possibility that they too might be subject to regulation by rhomboid-like proteins. We present the cDNA cloning and polypeptide sequence of an atypically long human rhomboid, which, based on the absence of critical residues for serine protease activity, is not predicted to act as a serine protease. We examined its tissue distribution, in comparison with TGF-alpha and the TGF-alpha-related protein HB-EGF, and the EGF/TGF-alpha receptor, in mouse embryo. This rhomboid, named p100(hRho) or RHBDF1, is a seven-transmembrane protein with a long N-terminal cytoplasmic extension that comprises half of the polypeptide sequence, and is found in the endoplasmic reticulum and Golgi, but not on the cell surface. It is expressed as two forms with different lengths, forms dimers and interacts with TGF-alpha ligands through a luminal interaction with the EGF core ectodomain. Finally, we evaluated the function of p100(hRho)/RHBDF1 in Drosophila, demonstrating that the short, but not the full-length form has functional activity. The characterization of this protein extends our understanding of the rhomboid family of regulatory proteins.


Assuntos
Receptores ErbB/metabolismo , Fator de Crescimento Transformador alfa/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Dimerização , Drosophila/fisiologia , Receptores ErbB/química , Receptores ErbB/genética , Humanos , Ligantes , Proteínas de Membrana , Camundongos , Dados de Sequência Molecular , Família Multigênica , Especificidade de Órgãos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína
18.
Proc Natl Acad Sci U S A ; 99(6): 3752-7, 2002 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-11904431

RESUMO

The Drosophila epidermal growth factor receptor (EGF-R) controls many critical cell fate choices throughout development. Several proteins collaborate to promote localized EGF-R activation, such as Star and Rhomboid (Rho), which act sequentially to ensure the maturation and processing of inactive membrane-bound EGF ligands. To gain insights into the mechanisms underlying Rho and Star function, we developed a mutagenesis scheme to isolate novel overexpression activity (NOVA) alleles. In the case of rho, we isolated a dominant neomorphic allele, which interferes with Notch signaling, as well as a dominant-negative allele, which produces RNA interference-like flip-back transcripts that reduce endogenous rho expression. We also obtained dominant-negative and neomorphic Star mutations, which have phenotypes similar to those of rho NOVA alleles, as well as dominant-negative Egf-r alleles. The isolation of dominant alleles in several different genes suggests that NOVA mutagenesis should be widely applicable and emerge as an effective tool for generating dominant mutations in genes of unknown function.


Assuntos
Drosophila melanogaster/metabolismo , Receptores ErbB/metabolismo , Genes Dominantes/genética , Proteínas de Membrana/metabolismo , Mutagênese/genética , Transdução de Sinais , Alelos , Sequência de Aminoácidos , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Feminino , Expressão Gênica , Genes de Insetos/genética , Masculino , Proteínas de Membrana/genética , Dados de Sequência Molecular , Fenótipo , RNA/genética , RNA/metabolismo , Receptores Notch , Asas de Animais/embriologia , Asas de Animais/fisiologia
19.
Development ; 130(2): 235-48, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12466192

RESUMO

The adjacent knirps (kni) and knirps-related (knrl) genes encode functionally related zinc finger transcription factors that collaborate to initiate development of the second longitudinal wing vein (L2). kni and knrl are expressed in the third instar larval wing disc in a narrow stripe of cells just anterior to the broad central zone of cells expressing high levels of the related spalt genes. Here, we identify a 1.4 kb cis-acting enhancer element from the kni locus that faithfully directs gene expression in the L2 primordium. We find that three independent ri alleles have alterations mapping within the L2-enhancer element and show that two of these observed lesions eliminate the ability of the enhancer element to direct gene expression in the L2 primordium. The L2 enhancer can be subdivided into distinct activation and repression domains. The activation domain mediates the combined action of the general wing activator Scalloped and a putative locally provided factor, the activity of which is abrogated by a single nucleotide alteration in the ri(53j) mutant. We also find that misexpression of genes in L2 that are normally expressed in veins other than L2 results in abnormal L2 development. These experiments provide a mechanistic basis for understanding how kni and knrl link AP patterning to morphogenesis of the L2 vein by orchestrating the expression of a selective subset of vein-promoting genes in the L2 primordium.


Assuntos
Padronização Corporal , Proteínas de Ligação a DNA/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese , Proteínas Repressoras/genética , Asas de Animais/crescimento & desenvolvimento , Alelos , Animais , Sequência de Bases , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Genes de Insetos , Hibridização In Situ , Hormônios de Inseto/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Proteínas Repressoras/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/metabolismo , Transgenes , Asas de Animais/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa