Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(3): e17237, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488024

RESUMO

Scots pine (Pinus sylvestris L.) is a common European tree species, and understanding its acclimation to the rapidly changing climate through physiological, biochemical or structural adjustments is vital for predicting future growth. We investigated a long-term irrigation experiment at a naturally dry forest in Switzerland, comparing Scots pine trees that have been continuously irrigated for 17 years (irrigated) with those for which irrigation was interrupted after 10 years (stop) and non-irrigated trees (control), using tree growth, xylogenesis, wood anatomy, and carbon, oxygen and hydrogen stable isotope measurements in the water, sugars and cellulose of plant tissues. The dendrochronological analyses highlighted three distinct acclimation phases to the treatments: irrigated trees experienced (i) a significant growth increase in the first 4 years of treatment, (ii) high growth rates but with a declining trend in the following 8 years and finally (iii) a regression to pre-irrigation growth rates, suggesting the development of a new growth limitation (i.e. acclimation). The introduction of the stop treatment resulted in further growth reductions to below-control levels during the third phase. Irrigated trees showed longer growth periods and lower tree-ring δ13 C values, reflecting lower stomatal restrictions than control trees. Their strong tree-ring δ18 O and δ2 H (O-H) relationship reflected the hydrological signature similarly to the control. On the contrary, the stop trees had lower growth rates, conservative wood anatomical traits, and a weak O-H relationship, indicating a physiological imbalance. Tree vitality (identified by crown transparency) significantly modulated growth, wood anatomical traits and tree-ring δ13 C, with low-vitality trees of all treatments performing similarly regardless of water availability. We thus provide quantitative indicators for assessing physiological imbalance and tree acclimation after environmental stresses. We also show that tree vitality is crucial in shaping such responses. These findings are fundamental for the early assessment of ecosystem imbalances and decline under climate change.


Assuntos
Pinus sylvestris , Árvores , Ecossistema , Secas , Isótopos/análise , Pinus sylvestris/fisiologia , Aclimatação , Água/fisiologia , Isótopos de Carbono/análise , Isótopos de Oxigênio/análise
2.
Glob Chang Biol ; 28(9): 3145-3160, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35124879

RESUMO

Summer droughts strongly affect soil organic carbon (SOC) cycling, but net effects on SOC storage are unclear as drought affects both C inputs and outputs from soils. Here, we explored the overlooked role of soil fauna on SOC storage in forests, hypothesizing that soil faunal activity is particularly drought-sensitive, thereby reducing litter incorporation into the mineral soil and, eventually, long-term SOC storage. In a drought-prone pine forest (Switzerland), we performed a large-scale irrigation experiment for 17 years and assessed its impact on vertical SOC distribution and composition. We also examined litter mass loss of dominant tree species using different mesh-size litterbags and determined soil fauna abundance and community composition. The 17-year-long irrigation resulted in a C loss in the organic layers (-1.0 kg C m-2 ) and a comparable C gain in the mineral soil (+0.8 kg C m-2 ) and thus did not affect total SOC stocks. Irrigation increased the mass loss of Quercus pubescens and Viburnum lantana leaf litter, with greater effect sizes when meso- and macrofauna were included (+215%) than when excluded (+44%). The enhanced faunal-mediated litter mass loss was paralleled by a many-fold increase in the abundance of meso- and macrofauna during irrigation. Moreover, Acari and Collembola community composition shifted, with a higher presence of drought-sensitive species in irrigated soils. In comparison, microbial SOC mineralization was less sensitive to soil moisture. Our results suggest that the vertical redistribution of SOC with irrigation was mainly driven by faunal-mediated litter incorporation, together with increased root C inputs. Our study shows that soil fauna is highly sensitive to natural drought, which leads to a reduced C transfer from organic layers to the mineral soil. In the longer term, this potentially affects SOC storage and, therefore, soil fauna plays a key but so far largely overlooked role in shaping SOC responses to drought.


Assuntos
Pinus , Solo , Carbono , Ciclo do Carbono , Florestas
3.
Stem Cell Res ; 60: 102712, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35203050

RESUMO

Dravet syndrome is an early onset devastating epilepsy syndrome usually caused by heterozygous mutations in SCN1A. We generated a human iPSC line (UUIGPi015-A) from dermal fibroblasts of a patient with Dravet syndrome carrying a deletion on chromosome 2 encompassing SCN1A and 9 flanking genes. Characterization of the iPSC line confirmed expression of pluripotency markers, tri-lineage differentiation capacity and absence of exogenous reprogramming factors. The iPSC line retained the deletion and was genomically stable. The iPSC line UUIGPi015-A provides a useful resource for studies on the pathophysiology of Dravet syndrome and seizures caused by haploinsufficiency of SCN1A and flanking gene products.


Assuntos
Epilepsias Mioclônicas , Células-Tronco Pluripotentes Induzidas , Cromossomos Humanos Par 2 , Epilepsias Mioclônicas/genética , Síndromes Epilépticas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Espasmos Infantis
4.
Stem Cell Res ; 57: 102577, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34688129

RESUMO

Heterozygous variants in POLR2A, encoding the largest subunit of RNA polymerase II, cause severe neurodevelopmental and multisystem abnormalities in humans. Using CRISPR/Cas9 we generated the human iPSC line KICRi002A-5 with a heterozygous truncating 4 bp insertion in exon 5 of the POLR2A gene. Analysis using qRT-PCR confirmed reduced POLR2A mRNA in KICRi002A-5 vs. the isogenic WT iPSC line. The edited iPSC line expressed pluripotency markers and exhibited differentiation capacity into the three germ layers. Assessment of genomic integrity revealed a normal karyotype and OFF-target editing was excluded. The iPSC line KICRi002A-5 provides a useful resource to study mechanisms underlying developmental defects caused by RBP1 insufficiency.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa