RESUMO
BACKGROUND: Human epidermal growth factor 2 (HER2/ERBB2) is frequently amplified/mutated in cancer. The tyrosine kinase inhibitors (TKIs) lapatinib, neratinib, and tucatinib are FDA-approved for the treatment of HER2-positive breast cancer. Direct comparisons of the preclinical efficacy of the TKIs have been limited to small-scale studies. Novel biomarkers are required to define beneficial patient populations. METHODS: In this study, the anti-proliferative effects of the three TKIs were directly compared using a 115 cancer cell line panel. Novel TKI response/resistance markers were identified through cross-analysis of drug response profiles with mutation, gene copy number and expression data. RESULTS: All three TKIs were effective against HER2-amplified breast cancer models; neratinib showing the most potent activity, followed by tucatinib then lapatinib. Neratinib displayed the greatest activity in HER2-mutant and EGFR-mutant cells. High expression of HER2, VTCN1, CDK12, and RAC1 correlated with response to all three TKIs. DNA damage repair genes were associated with TKI resistance. BRCA2 mutations were correlated with neratinib and tucatinib response, and high expression of ATM, BRCA2, and BRCA1 were associated with neratinib resistance. CONCLUSIONS: Neratinib was the most effective HER2-targeted TKI against HER2-amplified, -mutant, and EGFR-mutant cell lines. This analysis revealed novel resistance mechanisms that may be exploited using combinatorial strategies.
Assuntos
Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias/patologia , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Apoptose , Proliferação de Células , Humanos , Lapatinib/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Quinolinas/farmacologia , Trastuzumab/farmacologia , Células Tumorais CultivadasRESUMO
Skepinone-L was recently reported to be a p38α MAP kinase inhibitor with high potency and excellent selectivity inâ vitro and inâ vivo. However, this class of compounds still act as fully ATP-competitive Typeâ I binders which, furthermore, suffer from short residence times at the enzyme. We herein describe a further development with the first Typeâ I1/2 binders for p38α MAP kinase. Typeâ I1/2 inhibitors interfere with the R-spine, inducing a glycine flip and occupying both hydrophobic regionsâ I and II. This design approach leads to prolonged target residence time, binding to both the active and inactive states of the kinase, excellent selectivity, excellent potency on the enzyme level, and low nanomolar activity in a human whole blood assay. This promising binding mode is proven by X-ray crystallography.
Assuntos
Dibenzocicloeptenos/farmacologia , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Sítios de Ligação/efeitos dos fármacos , Cristalografia por Raios X , Dibenzocicloeptenos/síntese química , Dibenzocicloeptenos/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Fatores de TempoRESUMO
BACKGROUND: Pediatric acute lymphoblastic leukemia (ALL) is the most common childhood cancer and the leading cause of cancer-related mortality in children. T cell ALL (T-ALL) represents about 15% of pediatric ALL cases and is considered a high-risk disease. T-ALL is often associated with resistance to treatment, including steroids, which are currently the cornerstone for treating ALL; moreover, initial steroid response strongly predicts survival and cure. However, the cellular mechanisms underlying steroid resistance in T-ALL patients are poorly understood. In this study, we combined various genomic datasets in order to identify candidate genetic mechanisms underlying steroid resistance in children undergoing T-ALL treatment. METHODS AND FINDINGS: We performed whole genome sequencing on paired pre-treatment (diagnostic) and post-treatment (remission) samples from 13 patients, and targeted exome sequencing of pre-treatment samples from 69 additional T-ALL patients. We then integrated mutation data with copy number data for 151 mutated genes, and this integrated dataset was tested for associations of mutations with clinical outcomes and in vitro drug response. Our analysis revealed that mutations in JAK1 and KRAS, two genes encoding components of the interleukin 7 receptor (IL7R) signaling pathway, were associated with steroid resistance and poor outcome. We then sequenced JAK1, KRAS, and other genes in this pathway, including IL7R, JAK3, NF1, NRAS, and AKT, in these 69 T-ALL patients and a further 77 T-ALL patients. We identified mutations in 32% (47/146) of patients, the majority of whom had a specific T-ALL subtype (early thymic progenitor ALL or TLX). Based on the outcomes of these patients and their prednisolone responsiveness measured in vitro, we then confirmed that these mutations were associated with both steroid resistance and poor outcome. To explore how these mutations in IL7R signaling pathway genes cause steroid resistance and subsequent poor outcome, we expressed wild-type and mutant IL7R signaling molecules in two steroid-sensitive T-ALL cell lines (SUPT1 and P12 Ichikawa cells) using inducible lentiviral expression constructs. We found that expressing mutant IL7R, JAK1, or NRAS, or wild-type NRAS or AKT, specifically induced steroid resistance without affecting sensitivity to vincristine or L-asparaginase. In contrast, wild-type IL7R, JAK1, and JAK3, as well as mutant JAK3 and mutant AKT, had no effect. We then performed a functional study to examine the mechanisms underlying steroid resistance and found that, rather than changing the steroid receptor's ability to activate downstream targets, steroid resistance was associated with strong activation of MEK-ERK and AKT, downstream components of the IL7R signaling pathway, thereby inducing a robust antiapoptotic response by upregulating MCL1 and BCLXL expression. Both the MEK-ERK and AKT pathways also inactivate BIM, an essential molecule for steroid-induced cell death, and inhibit GSK3B, an important regulator of proapoptotic BIM. Importantly, treating our cell lines with IL7R signaling inhibitors restored steroid sensitivity. To address clinical relevance, we treated primary T-ALL cells obtained from 11 patients with steroids either alone or in combination with IL7R signaling inhibitors; we found that including a MEK, AKT, mTOR, or dual PI3K/mTOR inhibitor strongly increased steroid-induced cell death. Therefore, combining these inhibitors with steroid treatment may enhance steroid sensitivity in patients with ALL. The main limitation of our study was the modest cohort size, owing to the very low incidence of T-ALL. CONCLUSIONS: Using an unbiased sequencing approach, we found that specific mutations in IL7R signaling molecules underlie steroid resistance in T-ALL. Future prospective clinical studies should test the ability of inhibitors of MEK, AKT, mTOR, or PI3K/mTOR to restore or enhance steroid sensitivity and improve clinical outcome.
Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genoma , Interleucina-7/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Esteroides/farmacologia , Adolescente , Criança , Pré-Escolar , Exoma , Humanos , Interleucina-7/metabolismo , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/etiologia , Análise de Sequência de DNARESUMO
Chemokines comprise a family of secreted proteins that activate G protein-coupled chemokine receptors and thereby control the migration of leukocytes during inflammation or immune surveillance. The positional information required for such migratory behavior is governed by the binding of chemokines to membrane-tethered glycosaminoglycans (GAGs), which establishes a chemokine concentration gradient. An often observed but incompletely understood behavior of chemokines is the ability of unrelated chemokines to enhance the potency with which another chemokine subtype can activate its cognate receptor. This phenomenon has been demonstrated to occur between many chemokine combinations and across several model systems and has been dubbed chemokine cooperativity. In this study, we have used GAG binding-deficient chemokine mutants and cell-based functional (migration) assays to demonstrate that chemokine cooperativity is caused by competitive binding of chemokines to GAGs. This mechanistic explanation of chemokine cooperativity provides insight into chemokine gradient formation in the context of inflammation, in which multiple chemokines are secreted simultaneously.
Assuntos
Quimiocinas/metabolismo , Glicosaminoglicanos/metabolismo , Animais , Ligação Competitiva , Células CHO , Quimiocina CCL19/metabolismo , Quimiocina CCL21/metabolismo , Quimiocina CXCL13/metabolismo , Quimiocinas/química , Quimiotaxia , Cricetinae , Cricetulus , Modelos Biológicos , Ligação Proteica , Multimerização Proteica , Receptores de Quimiocinas/metabolismoRESUMO
Chemokine receptors form a large subfamily of G protein-coupled receptors that predominantly activate heterotrimeric Gi proteins and are involved in immune cell migration. CCX-CKR is an atypical chemokine receptor with high affinity for CCL19, CCL21, and CCL25 chemokines, but is not known to activate intracellular signaling pathways. However, CCX-CKR acts as decoy receptor and efficiently internalizes these chemokines, thereby preventing their interaction with other chemokine receptors, like CCR7 and CCR9. Internalization of fluorescently labeled CCL19 correlated with ß-arrestin2-GFP translocation. Moreover, recruitment of ß-arrestins to CCX-CKR in response to CCL19, CCL21, and CCL25 was demonstrated using enzyme-fragment complementation and bioluminescence resonance energy transfer methods. To unravel why CCX-CKR is unable to activate Gi signaling, CCX-CKR chimeras were constructed by substituting its intracellular loops with the corresponding CCR7 or CCR9 domains. The signaling properties of chimeric CCX-CKR receptors were characterized using a cAMP-responsive element (CRE)-driven reporter gene assay. Unexpectedly, wild type CCX-CKR and a subset of the chimeras induced an increase in CRE activity in response to CCL19, CCL21, and CCL25 in the presence of the Gi inhibitor pertussis toxin. CCX-CKR signaling to CRE required an intact DRY motif. These data suggest that inactive Gi proteins impair CCX-CKR signaling most likely by hindering the interaction of this receptor with pertussis toxin-insensitive G proteins that transduce signaling to CRE. On the other hand, recruitment of the putative signaling scaffold ß-arrestin to CCX-CKR in response to chemokines might allow activation of yet to be identified signal transduction pathways.
Assuntos
Arrestinas/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Receptores CCR/metabolismo , Transdução de Sinais , Animais , Arrestinas/genética , Ligação Competitiva/efeitos dos fármacos , Western Blotting , Células CHO , Linhagem Celular Tumoral , Quimiocina CCL19/metabolismo , Quimiocina CCL19/farmacologia , Quimiocina CCL21/metabolismo , Quimiocina CCL21/farmacologia , Quimiocinas CC/metabolismo , Quimiocinas CC/farmacologia , Cricetinae , Cricetulus , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Microscopia de Fluorescência , Modelos Biológicos , Toxina Pertussis/farmacologia , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Receptores CCR/genética , beta-ArrestinasRESUMO
OM-85 is a bacterial lysate used in clinical practice to reduce duration and frequency of recurrent respiratory tract infections. Whereas knowledge of its regulatory effects in vivo has substantially advanced, the mechanisms of OM-85 sensing remain inadequately addressed. Here, we show that the immune response to OM-85 in the mouse is largely mediated by myeloid immune cells through Toll-like receptor (TLR) 4 in vitro and in vivo. Instead, in human immune cells, TLR2 and TLR4 orchestrate the response to OM-85, which binds to both receptors as shown by surface plasmon resonance assay. Ribonucleic acid-sequencing analyses of human monocyte-derived dendritic cells reveal that OM-85 triggers a pro-inflammatory signature and a unique gene set, which is not induced by canonical agonists of TLR2 or TLR4 and comprises tolerogenic genes. A largely overlapping TLR2/4-dependent gene signature was observed in individual subsets of primary human airway myeloid cells, highlighting the robust effects of OM-85. Collectively, our results suggest caution should be taken when relating murine studies on bacterial lysates to humans. Furthermore, our data shed light on how a standardized bacterial lysate shapes the response through TLR2 and TLR4, which are crucial for immune response, trained immunity, and tolerance.
Assuntos
Imunomodulação , Células Mieloides , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Humanos , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Camundongos , Animais , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Células Mieloides/imunologia , Células Mieloides/metabolismo , Células Dendríticas/imunologia , Transcriptoma , Células Cultivadas , Camundongos Knockout , Regulação da Expressão Gênica , Lisados BacterianosRESUMO
Background: Threonine tyrosine kinase (TTK) and polo-like kinase 1 (PLK1) are common essential kinases that collaborate in activating the spindle assembly checkpoint (SAC) at the kinetochore, ensuring appropriate chromosome alignment and segregation prior to mitotic exit. Targeting of either TTK or PLK1 has been clinically evaluated in cancer patients; however, dual inhibitors have not yet been pursued. Here we present the in vitro and in vivo characterization of a first in class, dual TTK/PLK1 inhibitor (BAL0891). Methods: Mechanism of action studies utilized biochemical kinase and proteomics-based target-engagement assays. Cellular end-point assays included immunoblot- and flow cytometry-based cell cycle analyses and SAC integrity evaluation using immunoprecipitation and immunofluorescence approaches. Anticancer activity was assessed in vitro using cell growth assays and efficacy was evaluated, alone and in combination with paclitaxel and carboplatin, using mouse models of triple negative breast cancer (TNBC). Results: BAL0891 elicits a prolonged effect on TTK, with a transient activity on PLK1. This unique profile potentiates SAC disruption, forcing tumor cells to aberrantly exit mitosis with faster kinetics than observed with a TTK-specific inhibitor. Broad anti-proliferative activity was demonstrated across solid tumor cell lines in vitro. Moreover, intermittent intravenous single-agent BAL0891 treatment of the MDA-MB-231 mouse model of TNBC induced profound tumor regressions associated with prolonged TTK and transient PLK1 in-tumor target occupancy. Furthermore, differential tumor responses across a panel of thirteen TNBC patient-derived xenograft models indicated profound anticancer activity in a subset (~40%). Using a flexible dosing approach, pathologically confirmed cures were observed in combination with paclitaxel, whereas synergy with carboplatin was schedule dependent. Conclusions: Dual TTK/PLK1 inhibition represents a novel approach for the treatment of human cancer, including TNBC patients, with a potential for potent anticancer activity and a favorable therapeutic index. Moreover, combination approaches may provide an avenue to expand responsive patient populations.
RESUMO
Molecular-glue degraders are small molecules that induce a specific interaction between an E3 ligase and a target protein, resulting in the target proteolysis. The discovery of molecular glue degraders currently relies mostly on screening approaches. Here, we describe screening of a library of cereblon (CRBN) ligands against a panel of patient-derived cancer cell lines, leading to the discovery of SJ7095, a potent degrader of CK1α, IKZF1 and IKZF3 proteins. Through a structure-informed exploration of structure activity relationship (SAR) around this small molecule we develop SJ3149, a selective and potent degrader of CK1α protein in vitro and in vivo. The structure of SJ3149 co-crystalized in complex with CK1α + CRBN + DDB1 provides a rationale for the improved degradation properties of this compound. In a panel of 115 cancer cell lines SJ3149 displays a broad antiproliferative activity profile, which shows statistically significant correlation with MDM2 inhibitor Nutlin-3a. These findings suggest potential utility of selective CK1α degraders for treatment of hematological cancers and solid tumors.
Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular , Neoplasias/tratamento farmacológico , Proteólise , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
The molecular mechanisms contributing to immune suppression in ovarian cancer are not well understood, hampering the successful application of immunotherapy. Amino acid-metabolizing enzymes are known to contribute to the immune-hostile environment of various tumors through depletion of amino acids and production of immunosuppressive metabolites. We aimed to collectively evaluate the activity of these enzymes in high-grade serous ovarian cancer patients by performing targeted metabolomics on plasma and ascites samples. Whereas no indication was found for enhanced l-arginine or l-glutamine metabolism by immunosuppressive enzymes in ovarian cancer patients, metabolism of l-tryptophan by indoleamine 2,3-dioxygenase 1 (IDO1) was significantly elevated compared to healthy controls. Moreover, high levels of l-phenylalanine- and l-tyrosine-derived metabolites associated with interleukin 4 induced 1 (IL4I1) activity were found in ovarian cancer ascites samples. While l-tryptophan is a major substrate of both IDO1 and IL4I1, only its enhanced conversion into l-kynurenine by IDO1 could be detected, despite the observed activity of IL4I1 on its other substrates. In ascites of ovarian cancer patients, metabolite levels were higher compared to those in plasma, demonstrating the value of utilizing this fluid for biomarker identification. Finally, elevated metabolism of l-phenylalanine and l-tyrosine by IL4I1 correlated with disease stage, pointing towards a potential role for IL4I1 in ovarian cancer progression.
RESUMO
Vascular endothelial growth factor receptor 2 (VEGFR2), a key regulator of tumor angiogenesis, is highly expressed across numerous tumor types and has been an attractive target for anti-cancer therapy. However, clinical application of available VEGFR2 inhibitors has been challenged by limited efficacy and a wide range of side effects, potentially due to inadequate selectivity for VEGFR2. Thus, development of potent VEGFR2 inhibitors with improved selectivity is needed. Rivoceranib is an orally administered tyrosine kinase inhibitor that potently and selectively targets VEGFR2. A comparative understanding of the potency and selectivity of rivoceranib and approved inhibitors of VEGFR2 is valuable to inform rationale for therapy selection in the clinic. Here, we performed biochemical analyses of the kinase activity of VEGFR2 and of a panel of 270 kinases to compare rivoceranib to 10 FDA-approved kinase inhibitors ("reference inhibitors") with known activity against VEGFR2. Rivoceranib demonstrated potency within the range of the reference inhibitors, with a VEGFR2 kinase inhibition IC50 value of 16 nM. However, analysis of residual kinase activity of the panel of 270 kinases showed that rivoceranib displayed greater selectivity for VEGFR2 compared with the reference inhibitors. Differences in selectivity among compounds within the observed range of potency of VEGFR2 kinase inhibition are clinically relevant, as toxicities associated with available VEGFR2 inhibitors are thought to be partly due to their effects against kinases other than VEGFR2. Together, this comparative biochemical analysis highlights the potential for rivoceranib to address clinical limitations associated with off-target effects of currently available VEGFR2 inhibitors.
Assuntos
Inibidores da Angiogênese , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Inibidores da Angiogênese/farmacologia , Proliferação de Células , Fator A de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologiaRESUMO
Protein kinase inhibitors are amongst the most successful cancer treatments, but targetable kinases activated by genomic abnormalities are rare in T cell acute lymphoblastic leukemia. Nevertheless, kinases can be activated in the absence of genetic defects. Thus, phosphoproteomics can provide information on pathway activation and signaling networks that offer opportunities for targeted therapy. Here, we describe a mass spectrometry-based global phosphoproteomic profiling of 11 T cell acute lymphoblastic leukemia cell lines to identify targetable kinases. We report a comprehensive dataset consisting of 21,000 phosphosites on 4,896 phosphoproteins, including 217 kinases. We identify active Src-family kinases signaling as well as active cyclin-dependent kinases. We validate putative targets for therapy ex vivo and identify potential combination treatments, such as the inhibition of the INSR/IGF-1R axis to increase the sensitivity to dasatinib treatment. Ex vivo validation of selected drug combinations using patient-derived xenografts provides a proof-of-concept for phosphoproteomics-guided design of personalized treatments.
Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Linhagem Celular Tumoral , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Humanos , Fosforilação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linfócitos T/metabolismoRESUMO
During the last two decades, kinase inhibitors have become the major drug class for targeted cancer therapy. Although the number of approved kinase inhibitors increases rapidly, comprehensive in vitro profiling and comparison of inhibitor activities is often lacking in the public domain. Here we report the extensive profiling and comparison of 21 kinase inhibitors approved by the FDA for oncology indications since June 2018 and 13 previously approved comparators on panels of 255 biochemical kinase assays and 134 cancer cell line viability assays. Comparison of the cellular inhibition profiles of the EGFR inhibitors gefitinib, dacomitinib, and osimertinib identified the uncommon EGFR p.G719S mutation as a common response marker for EGFR inhibitors. Additionally, the FGFR inhibitors erdafitinib, infigratinib, and pemigatinib potently inhibited the viability of cell lines which harbored oncogenic alterations in FGFR1-3, irrespective of the specific clinical indications of the FGFR inhibitors. These results underscore the utility of in vitro kinase inhibitor profiling in cells for identifying new potential stratification markers for patient selection. Furthermore, comparison of the in vitro inhibition profiles of the RET inhibitors pralsetinib and selpercatinib revealed they had very similar biochemical and cellular selectivity. As an exception, an NTRK3 fusion-positive cell line was potently inhibited by pralsetinib but not by selpercatinib, which could be explained by the targeting of TRK kinases in biochemical assays by pralsetinib but not selpercatinib. This illustrates that unexpected differences in cellular activities between inhibitors that act through the same primary target can be explained by subtle differences in biochemical targeting. Lastly, FLT3-mutant cell lines were responsive to both FLT3 inhibitors gilteritinib and midostaurin, and the PI3K inhibitor duvelisib. Biochemical profiling revealed that the FLT3 and PI3K inhibitors targeted distinct kinases, indicating that unique dependencies can be identified by combined biochemical and cellular profiling of kinase inhibitors. This study provides the first large scale kinase assay or cell panel profiling study for newly approved kinase inhibitors, and shows that comprehensive in vitro profiling of kinase inhibitors can provide rationales for therapy selection and indication expansion of approved kinase inhibitors.
RESUMO
BACKGROUND: Designing maximally selective ligands that act on individual targets is the dominant paradigm in drug discovery. Poor selectivity can underlie toxicity and side effects in the clinic, and for this reason compound selectivity is increasingly monitored from very early on in the drug discovery process. To make sense of large amounts of profiling data, and to determine when a compound is sufficiently selective, there is a need for a proper quantitative measure of selectivity. RESULTS: Here we propose a new theoretical entropy score that can be calculated from a set of IC(50) data. In contrast to previous measures such as the 'selectivity score', Gini score, or partition index, the entropy score is non-arbitary, fully exploits IC(50) data, and is not dependent on a reference enzyme. In addition, the entropy score gives the most robust values with data from different sources, because it is less sensitive to errors. We apply the new score to kinase and nuclear receptor profiling data, and to high-throughput screening data. In addition, through analyzing profiles of clinical compounds, we show quantitatively that a more selective kinase inhibitor is not necessarily more drug-like. CONCLUSIONS: For quantifying selectivity from panel profiling, a theoretical entropy score is the best method. It is valuable for studying the molecular mechanisms of selectivity, and to steer compound progression in drug discovery programs.
Assuntos
Descoberta de Drogas/métodos , Entropia , Inibidores de Proteínas Quinases/isolamento & purificação , Inibidores de Proteínas Quinases/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Inibidores de Proteínas Quinases/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Design de SoftwareRESUMO
We have shown previously that different chemical classes of small-molecule antagonists of the human chemokine CXCR2 receptor interact with distinct binding sites of the receptor. Although an intracellular binding site for diarylurea CXCR2 antagonists, such as N-(2-bromophenyl)-N'-(7-cyano-1H-benzotriazol-4-yl)urea (SB265610), and thiazolopyrimidine compounds was recently mapped by mutagenesis studies, we now report on an imidazolylpyrimidine antagonist binding pocket in the transmembrane domain of CXCR2. Using different CXCR2 orthologs, chimeric proteins, site-directed mutagenesis, and in silico modeling, we have elucidated the binding mode of this antagonist. Our in silico-guided mutagenesis studies indicate that the ligand binding cavity for imidazolylpyrimidine compounds in CXCR2 is located between transmembrane (TM) helices 3 (Phe130(3.36)), 5 (Ser217(5.44), Phe220(5.47)), and 6 (Asn268(6.52), Leu271(6.55)) and suggest that these antagonists enter CXCR2 via the TM5-TM6 interface. It is noteworthy that the same interface is postulated as the ligand entry channel in the opsin receptor and is occupied by lipid molecules in the recently solved crystal structure of the CXCR4 chemokine receptor, suggesting a general ligand entrance mechanism for nonpolar ligands to G protein-coupled receptors. The identification of a novel allosteric binding cavity in the TM domain of CXCR2, in addition to the previously identified intracellular binding site, shows the diversity in ligand recognition mechanisms by this receptor and offers new opportunities for the structure-based design of small allosteric modulators of CXCR2 in the future.
Assuntos
Receptores de Interleucina-8B/metabolismo , Sítio Alostérico/genética , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Gorilla gorilla , Humanos , Ligantes , Macaca mulatta , Dados de Sequência Molecular , Pan troglodytes , Papio , Pongo pygmaeus , Receptores de Interleucina-8B/genética , Opsinas de Bastonetes/genética , Opsinas de Bastonetes/metabolismo , Especificidade da EspécieRESUMO
Wnt/beta-catenin signaling is an important regulator of cell polarity, proliferation, and stem cell maintenance during development and adulthood. Wnt proteins induce the nuclear accumulation of beta-catenin, which regulates the expression of Wnt-responsive genes through association with TCF/LEF transcription factors. Aberrant Wnt/beta-catenin signaling has been implicated in a plethora of pathologies and, most notably, underlies initiation and expansion of several cancers. Here, we apply enzyme fragment complementation to measure the nuclear accumulation of beta-catenin. beta-Catenin was tagged with a peptide fragment of beta-galactosidase and transfected into cells expressing a corresponding deletion mutant of the enzyme exclusively in the nucleus. Stimulation of the cells with recombinant Wnt-3a restored beta-galactosidase activity in a dose-dependent manner with nanomolar potency. Using the assay, we confirmed that Wnt-5a represses beta-catenin-driven reporter gene activity downstream of nuclear entry of beta-catenin. In addition, we tested a library of >2000 synthetic chemical compounds for their ability to induce beta-catenin nuclear accumulation. The immunosuppressive protein kinase C inhibitor sotrastaurin (AEB-071) was identified as an activator of Wnt/beta-catenin signaling at micromolar concentrations. It was confirmed that the compound stabilizes endogenous beta-catenin protein and can induce TCF/LEF-dependent gene transcription. Subsequent biochemical profiling of >200 kinases revealed both isoforms of glycogen synthase kinase 3, as previously unappreciated targets of sotrastaurin. We show that the beta-catenin nuclear accumulation assay contributes to our knowledge of molecular interactions within the Wnt/beta-catenin pathway and can be used to find new therapeutics targeting Wnt/beta-catenin signaling.-Verkaar, F., Blankesteijn, W. M., Smits, J. F. M., Zaman, G. J. R. beta-Galactosidase enzyme fragment complementation for the measurement of Wnt/beta-catenin signaling.
Assuntos
Regulação para Baixo/efeitos dos fármacos , Teste de Complementação Genética/métodos , Transdução de Sinais/efeitos dos fármacos , Proteínas Wnt/farmacologia , beta Catenina/metabolismo , beta-Galactosidase/biossíntese , Animais , Polaridade Celular , Proliferação de Células , Regulação para Baixo/fisiologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Células Jurkat , Camundongos , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirróis/farmacologia , Quinazolinas/farmacologia , Transdução de Sinais/fisiologia , Fatores de Transcrição TCF , Transcrição Gênica , Transgenes/fisiologia , Proteína Wnt-5a , Proteína Wnt3 , Proteína Wnt3A , beta Catenina/genética , beta-Galactosidase/genéticaRESUMO
(Patho-)physiological activation of the IL7-receptor (IL7R) signaling contributes to steroid resistance in pediatric T-cell acute lymphoblastic leukemia (T-ALL). Here, we show that activating IL7R pathway mutations and physiological IL7R signaling activate MAPK-ERK signaling, which provokes steroid resistance by phosphorylation of BIM. By mass spectrometry, we demonstrate that phosphorylated BIM is impaired in binding to BCL2, BCLXL and MCL1, shifting the apoptotic balance toward survival. Treatment with MEK inhibitors abolishes this inactivating phosphorylation of BIM and restores its interaction with anti-apoptotic BCL2-protein family members. Importantly, the MEK inhibitor selumetinib synergizes with steroids in both IL7-dependent and IL7-independent steroid resistant pediatric T-ALL PDX samples. Despite the anti-MAPK-ERK activity of ruxolitinib in IL7-induced signaling and JAK1 mutant cells, ruxolitinib only synergizes with steroid treatment in IL7-dependent steroid resistant PDX samples but not in IL7-independent steroid resistant PDX samples. Our study highlights the central role for MAPK-ERK signaling in steroid resistance in T-ALL patients, and demonstrates the broader application of MEK inhibitors over ruxolitinib to resensitize steroid-resistant T-ALL cells. These findings strongly support the enrollment of T-ALL patients in the current phase I/II SeluDex trial (NCT03705507) and contributes to the optimization and stratification of newly designed T-ALL treatment regimens.
Assuntos
Resistencia a Medicamentos Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Esteroides/farmacologia , Animais , Apoptose , MAP Quinases Reguladas por Sinal Extracelular/genética , Humanos , Interleucina-7 , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptores de Interleucina-7 , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Parkinson's disease patients suffer from both motor and nonmotor impairments. There is currently no cure for Parkinson's disease, and the most commonly used treatment, levodopa, only functions as a temporary relief of motor symptoms. Inhibition of the expression of the L-tryptophan-catabolizing enzyme tryptophan 2,3-dioxygenase (TDO) has been shown to inhibit aging-related α-synuclein toxicity in Caenorhabditis elegans. To evaluate TDO inhibition as a potential therapeutic strategy for Parkinson's disease, a brain-penetrable, small molecule TDO inhibitor was developed, referred to as NTRC 3531-0. This compound potently inhibits human and mouse TDO in biochemical and cell-based assays and is selective over IDO1, an evolutionary unrelated enzyme that catalyzes the same reaction. In mice, NTRC 3531-0 increased plasma and brain L-tryptophan levels after oral administration, demonstrating inhibition of TDO activity in vivo. The effect on Parkinson's disease symptoms was evaluated in a rotenone-induced Parkinson's disease mouse model. A structurally dissimilar TDO inhibitor, LM10, was evaluated in parallel. Both inhibitors had beneficial effects on rotenone-induced motor and cognitive dysfunction as well as rotenone-induced dopaminergic cell loss and neuroinflammation in the substantia nigra. Moreover, both inhibitors improved intestinal transit and enhanced colon length, which indicates a reduction of the rotenone-induced intestinal dysfunction. Consistent with this, mice treated with TDO inhibitor showed decreased expression of rotenone-induced glial fibrillary acidic protein, which is a marker of enteric glial cells, and decreased α-synuclein accumulation in the enteric plexus. Our data support TDO inhibition as a potential therapeutic strategy to decrease motor, cognitive, and gastrointestinal symptoms in Parkinson's disease.
Assuntos
Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Doença de Parkinson/tratamento farmacológico , Rotenona/toxicidade , Bibliotecas de Moléculas Pequenas/farmacologia , Triptofano Oxigenase/antagonistas & inibidores , Animais , Encéfalo/patologia , Cognição/efeitos dos fármacos , Inseticidas/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Doença de Parkinson/etiologia , Doença de Parkinson/patologiaRESUMO
Arginase-1 is a manganese-dependent metalloenzyme that catalyzes the hydrolysis of L-arginine into L-ornithine and urea. Arginase-1 is abundantly expressed by tumor-infiltrating myeloid cells that promote tumor immunosuppression, which is relieved by inhibition of Arginase-1. We have characterized the potencies of the Arginase-1 reference inhibitors (2S)-2-amino-6-boronohexanoic acid (ABH) and N ω-hydroxy-nor-L-arginine (nor-NOHA), and studied their pH-dependence and binding kinetics. To gain a better understanding of the structural changes underlying the high pH optimum of Arginase-1 and its pH-dependent inhibition, we determined the crystal structure of the human Arginase-1/ABH complex at pH 7.0 and 9.0. These structures revealed that at increased pH, the manganese cluster assumes a more symmetrical coordination structure, which presumably contributes to its increase in catalytic activity. Furthermore, we show that binding of ABH involves the presence of a sodium ion close to the manganese cluster. We also studied the investigational new drug CB-1158 (INCB001158). This inhibitor has a low-nanomolar potency at pH 7.4 and increases the thermal stability of Arginase-1 more than ABH and nor-NOHA. Moreover, CB-1158 displays slow association and dissociation kinetics at both pH 9.5 and 7.4, as indicated by surface plasmon resonance. The potent character of CB-1158 is presumably due to its increased rigidity compared to ABH as well as the formation of an additional hydrogen-bond network as observed by resolution of the Arginase-1/CB-1158 crystal structure.
RESUMO
Arginase-1, which converts the amino acid L-arginine into L-ornithine and urea, is a promising new drug target for cancer immunotherapy, as it has a role in the regulation of T-cell immunity in the tumor microenvironment. To enable the discovery of small-molecule Arginase-1 inhibitors by high-throughput screening, we developed a novel homogeneous (mix-and-measure) fluorescence-based activity assay. The assay measures the conversion of L-arginine into L-ornithine by a decrease in fluorescent signal due to quenching of a fluorescent probe, Arginase Gold. This way, inhibition of Arginase-1 results in a gain of signal when compared with the uninhibited enzyme. Side-by-side profiling of reference inhibitors in the fluorescence-based assay and a colorimetric urea formation assay revealed similar potencies and the same potency rank order among the two assay formats. The fluorescence-based assay was successfully automated for high-throughput screening of a small-molecule library in 384-well format with a good Z'-factor and hit confirmation rate. Finally, we show that the assay can be used to study the binding kinetics of inhibitors.
Assuntos
Arginase/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Neoplasias/terapia , Arginase/antagonistas & inibidores , Arginase/imunologia , Arginina/genética , Arginina/metabolismo , Fluorescência , Humanos , Neoplasias/imunologia , Ornitina/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologiaRESUMO
BACKGROUND: In epithelial ovarian cancer (EOC), 15-20% of the tumors do not respond to first-line chemotherapy (paclitaxel with platinum-based therapy), and in recurrences this number increases. Our aim is to determine the feasibility of cell proliferation assays of tumor cells isolated from malignant ascites to predict in vitro chemotherapy sensitivity, and to correlate these results with clinical outcome. MATERIALS AND METHODS: Ascites was collected from twenty women with advanced EOC. Cell samples were enriched for tumor cells and EOC origin was confirmed by intracellular staining of CK7, surface staining of CA125 and EpCAM, and HE4 gene expression. In vitro sensitivity to chemotherapy was determined in cell proliferation assays using intracellular ATP content as an indirect measure of cell number. In vitro drug response was quantified by calculation of the drug concentration at which cell growth was inhibited with 50%. Clinical outcome was determined using post-treatment CA125 level. RESULTS: Cell samples of twenty patients were collected, of which three samples that failed to proliferate were excluded in the analysis (15%). Three other samples were excluded, because clinical outcome could not be determined correctly. In twelve of the fourteen remaining cases (86%) in vitro drug sensitivity and clinical outcome corresponded, while in two samples (14%) there was no correspondence. CONCLUSIONS: Our study demonstrates the feasibility of drug sensitivity tests using tumor cells isolated from ascites of advanced EOC patients. Larger observational studies are required to confirm the correlation between the in vitro sensitivity and clinical outcome.