Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Toxicol ; 94(6): 2149-2162, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32303805

RESUMO

Organophosphate (OP) threat agents can trigger seizures that progress to status epilepticus, resulting in persistent neuropathology and cognitive deficits in humans and preclinical models. However, it remains unclear whether patients who do not show overt seizure behavior develop neurological consequences. Therefore, this study compared two subpopulations of rats with a low versus high seizure response to diisopropylfluorophosphate (DFP) to evaluate whether acute OP intoxication causes persistent neuropathology in non-seizing individuals. Adult male Sprague Dawley rats administered DFP (4 mg/kg, sc), atropine sulfate (2 mg/kg, im), and pralidoxime (25 mg/kg, im) were monitored for seizure activity for 4 h post-exposure. Animals were separated into groups with low versus high seizure response based on behavioral criteria and electroencephalogram (EEG) recordings. Cholinesterase activity was evaluated by Ellman assay, and neuropathology was evaluated at 1, 2, 4, and 60 days post-exposure by Fluoro-Jade C (FJC) staining and micro-CT imaging. DFP significantly inhibited cholinesterase activity in the cortex, hippocampus, and amygdala to the same extent in low and high responders. FJC staining revealed significant neurodegeneration in DFP low responders albeit this response was delayed, less persistent, and decreased in magnitude compared to DFP high responders. Micro-CT scans at 60 days revealed extensive mineralization that was not significantly different between low versus high DFP responders. These findings highlight the importance of considering non-seizing patients for medical care in the event of acute OP intoxication. They also suggest that OP intoxication may induce neurological damage via seizure-independent mechanisms, which if identified, might provide insight into novel therapeutic targets.


Assuntos
Ondas Encefálicas/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Inibidores da Colinesterase/toxicidade , Convulsivantes/toxicidade , Isoflurofato/toxicidade , Degeneração Neural , Síndromes Neurotóxicas/etiologia , Convulsões/induzido quimicamente , Acetilcolinesterase/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Encéfalo/enzimologia , Encéfalo/fisiopatologia , Proteínas Ligadas por GPI/metabolismo , Masculino , Síndromes Neurotóxicas/diagnóstico por imagem , Síndromes Neurotóxicas/enzimologia , Síndromes Neurotóxicas/fisiopatologia , Ratos Sprague-Dawley , Convulsões/diagnóstico por imagem , Convulsões/enzimologia , Convulsões/fisiopatologia , Fatores de Tempo , Microtomografia por Raio-X
2.
J Neuroinflammation ; 8: 41, 2011 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-21535896

RESUMO

BACKGROUND: Exposure to the nerve agent soman (GD) causes neuronal cell death and impaired behavioral function dependent on the induction of status epilepticus (SE). Little is known about the maturation of this pathological process, though neuroinflammation and infiltration of neutrophils are prominent features. The purpose of this study is to quantify the regional and temporal progression of early chemotactic signals, describe the cellular expression of these factors and the relationship between expression and neutrophil infiltration in damaged brain using a rat GD seizure model. METHODS: Protein levels of 4 chemokines responsible for neutrophil infiltration and activation were quantified up to 72 hours in multiple brain regions (i.e. piriform cortex, hippocampus and thalamus) following SE onset using multiplex bead immunoassays. Chemokines with significantly increased protein levels were localized to resident brain cells (i.e. neurons, astrocytes, microglia and endothelial cells). Lastly, neutrophil infiltration into these brain regions was quantified and correlated to the expression of these chemokines. RESULTS: We observed significant concentration increases for CXCL1 and MIP-1α after seizure onset. CXCL1 expression originated from neurons and endothelial cells while MIP-1α was expressed by neurons and microglia. Lastly, the expression of these chemokines directly preceded and positively correlated with significant neutrophil infiltration in the brain. These data suggest that following GD-induced SE, a strong chemotactic response originating from various brain cells, recruits circulating neutrophils to the injured brain. CONCLUSIONS: A strong induction of neutrophil attractant chemokines occurs following GD-induced SE resulting in neutrophil influx into injured brain tissues. This process may play a key role in the progressive secondary brain pathology observed in this model though further study is warranted.


Assuntos
Encéfalo , Quimiocina CCL3/imunologia , Quimiocina CXCL1/imunologia , Convulsivantes/farmacologia , Infiltração de Neutrófilos/fisiologia , Soman/farmacologia , Estado Epiléptico/induzido quimicamente , Animais , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Células Endoteliais/citologia , Células Endoteliais/imunologia , Imunoensaio/métodos , Masculino , Microglia/citologia , Microglia/imunologia , Neurônios/citologia , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Estado Epiléptico/fisiopatologia
3.
Neurotoxicology ; 87: 106-119, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34509511

RESUMO

Organophosphate (OP) nerve agents and pesticides are a class of neurotoxic compounds that can cause status epilepticus (SE), and death following acute high-dose exposures. While the standard of care for acute OP intoxication (atropine, oxime, and high-dose benzodiazepine) can prevent mortality, survivors of OP poisoning often experience long-term brain damage and cognitive deficits. Preclinical studies of acute OP intoxication have primarily used rat models to identify candidate medical countermeasures. However, the mouse offers the advantage of readily available knockout strains for mechanistic studies of acute and chronic consequences of OP-induced SE. Therefore, the main objective of this study was to determine whether a mouse model of acute diisopropylfluorophosphate (DFP) intoxication would produce acute and chronic neurotoxicity similar to that observed in rat models and humans following acute OP intoxication. Adult male C57BL/6J mice injected with DFP (9.5 mg/kg, s.c.) followed 1 min later with atropine sulfate (0.1 mg/kg, i.m.) and 2-pralidoxime (25 mg/kg, i.m.) developed behavioral and electrographic signs of SE within minutes that continued for at least 4 h. Acetylcholinesterase inhibition persisted for at least 3 d in the blood and 14 d in the brain of DFP mice relative to vehicle (VEH) controls. Immunohistochemical analyses revealed significant neurodegeneration and neuroinflammation in multiple brain regions at 1, 7, and 28 d post-exposure in the brains of DFP mice relative to VEH controls. Deficits in locomotor and home-cage behavior were observed in DFP mice at 28 d post-exposure. These findings demonstrate that this mouse model replicates many of the outcomes observed in rats and humans acutely intoxicated with OPs, suggesting the feasibility of using this model for mechanistic studies and therapeutic screening.


Assuntos
Encéfalo/patologia , Isoflurofato/toxicidade , Estado Epiléptico/induzido quimicamente , Acetilcolinesterase/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Inibidores da Colinesterase/farmacologia , Modelos Animais de Doenças , Eletroencefalografia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Comportamento de Nidação/efeitos dos fármacos , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/psicologia , Teste de Campo Aberto , Estado Epiléptico/patologia , Estado Epiléptico/psicologia
4.
Eur J Pharmacol ; 886: 173538, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-32898549

RESUMO

Acute intoxication with organophosphorus cholinesterase inhibitors (OPs) can trigger seizures that rapidly progress to life-threatening status epilepticus. Diazepam, long considered the standard of care for treating OP-induced seizures, is being replaced by midazolam. Whether midazolam is more effective than diazepam in mitigating the persistent effects of acute OP intoxication has not been rigorously evaluated. We compared the efficacy of diazepam vs. midazolam in preventing persistent neuropathology in adult male Sprague-Dawley rats acutely intoxicated with the OP diisopropylfluorophosphate (DFP). Subjects were administered pyridostigmine bromide (0.1 mg/kg, i.p.) 30 min prior to injection with DFP (4 mg/kg, s.c.) or vehicle (saline) followed 1 min later by atropine sulfate (2 mg/kg, i.m.) and pralidoxime (25 mg/kg, i.m.), and 40 min later by diazepam (5 mg/kg, i.p.), midazolam (0.73 mg/kg, i.m.), or vehicle. At 3 and 6 months post-exposure, neurodegeneration, reactive astrogliosis, microglial activation, and oxidative stress were assessed in multiple brain regions using quantitative immunohistochemistry. Brain mineralization was evaluated by in vivo micro-computed tomography (micro-CT). Acute DFP intoxication caused persistent neurodegeneration, neuroinflammation, and brain mineralization. Midazolam transiently mitigated neurodegeneration, and both benzodiazepines partially protected against reactive astrogliosis in a brain region-specific manner. Neither benzodiazepine attenuated microglial activation or brain mineralization. These findings indicate that neither benzodiazepine effectively protects against persistent neuropathological changes, and suggest that midazolam is not significantly better than diazepam. Overall, this study highlights the need for improved neuroprotective strategies for treating humans in the event of a chemical emergency involving OPs.


Assuntos
Encefalopatias/induzido quimicamente , Encefalopatias/tratamento farmacológico , Inibidores da Colinesterase/intoxicação , Diazepam/uso terapêutico , Moduladores GABAérgicos/uso terapêutico , Isoflurofato/intoxicação , Midazolam/uso terapêutico , Animais , Encefalopatias/patologia , Gliose/induzido quimicamente , Gliose/tratamento farmacológico , Gliose/patologia , Masculino , Microglia/efeitos dos fármacos , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Síndromes Neurotóxicas/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Microtomografia por Raio-X
5.
Toxicol Sci ; 170(2): 330-344, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31087103

RESUMO

Acute intoxication with organophosphates (OPs) can trigger status epilepticus followed by persistent cognitive impairment and/or electroencephalographic abnormalities. Neuroinflammation is widely posited to influence these persistent neurological consequences. However, testing this hypothesis has been challenging, in part because traditional biometrics preclude longitudinal measures of neuroinflammation within the same animal. Therefore, we evaluated the performance of noninvasive positron emission tomography (PET), using the translocator protein (TSPO) radioligand [18F]PBR111 against classic histopathologic measures of neuroinflammation in a preclinical model of acute intoxication with the OP diisopropylfluorophosphate (DFP). Adult male Sprague Dawley rats administered pyridostigmine bromide (0.1 mg/kg, im) 30 min prior to administration of DFP (4 mg/kg, sc), atropine sulfate (2 mg/kg, im) and 2-pralidoxime (25 mg/kg, im) exhibited moderate-to-severe seizure behavior. TSPO PET performed prior to DFP exposure and at 3, 7, 14, 21, and 28 days postexposure revealed distinct lesions, as defined by increased standardized uptake values (SUV). Increased SUV showed high spatial correspondence to immunohistochemical evidence of neuroinflammation, which was corroborated by cytokine gene and protein expression. Regional SUV metrics varied spatiotemporally with days postexposure and correlated with the degree of neuroinflammation detected immunohistochemically. Furthermore, SUV metrics were highly correlated with seizure severity, suggesting that early termination of OP-induced seizures may be critical for attenuating subsequent neuroinflammatory responses. Normalization of SUV values to a cerebellar reference region improved correlations to all outcome measures and seizure severity. Collectively, these results establish TSPO PET using [18F]PBR111 as a robust, noninvasive tool for longitudinal monitoring of neuroinflammation following acute OP intoxication.


Assuntos
Proteínas de Transporte/farmacocinética , Inflamação/diagnóstico por imagem , Isoflurofato/toxicidade , Síndromes Neurotóxicas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Animais , Quimiocinas/análise , Citocinas/genética , Radioisótopos de Flúor , Inflamação/induzido quimicamente , Inflamação/imunologia , Masculino , Síndromes Neurotóxicas/imunologia , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A
6.
Neurotoxicology ; 63: 43-56, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28866071

RESUMO

Soman (GD) exposure results in status epilepticus (SE) that leads to neurodegeneration, neuroinflammation, and behavioral consequences including learning and memory deficits. The neuroinflammatory response is characterized by the upregulation of the pro-inflammatory cytokine, interleukin-1 (IL-1), which mediates the expression of other neurotoxic cytokines induced after GD exposure. However, the specific role of IL-1 signaling has not been defined in terms of the consequences of GD-induced SE. Therefore, the purpose of this study was to regulate IL-1 signaling and study the behavioral deficits and neurodegeneration that occur after convulsion onset. Wild type (WT), IL-1 receptor (IL-1R1) knockout (KO), and IL-1 receptor antagonist (IL-1Ra) KO mice were exposed to a convulsive dose of GD, and behavior was evaluated up to 18days later. Activity was studied using the Open Field, anxiety was assessed in the Zero Maze, and spatial learning and memory were evaluated with the Barnes Maze. The animals were euthanized at 24hours and 18days to determine neuropathology in the piriform cortex, amygdala, thalamus, and CA1, CA2/3, and CA4 regions of the hippocampus. Unlike the IL-1Ra KO, the IL-1R1 KO showed less neuropathology compared to WT at 24hours, but moderate to severe injury was found in all strains at 18days. Compared to their saline controls, the exposed WT mice were significantly more active in the Open Field, and the IL-1R1 KO strain showed reduced anxiety in the Zero Maze Test. Compared to WT mice, IL-1R1 and IL-1Ra KO mice had spatial learning and memory impairments in the Barnes Maze. Therefore, the IL-1 signaling pathway affects neurodegeneration and behavior after GD-induced convulsions.


Assuntos
Encéfalo , Convulsivantes/toxicidade , Proteína Antagonista do Receptor de Interleucina 1/deficiência , Receptores Tipo I de Interleucina-1/deficiência , Soman/toxicidade , Estado Epiléptico , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteína Antagonista do Receptor de Interleucina 1/genética , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Tipo I de Interleucina-1/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Aprendizagem Espacial/efeitos dos fármacos , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/genética , Estado Epiléptico/patologia , Estado Epiléptico/fisiopatologia
7.
J Inflamm (Lond) ; 12: 43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26203299

RESUMO

BACKGROUND: Status epilepticus (SE) can cause neuronal cell death and impaired behavioral function. Acute exposure to potent acetylcholinesterase inhibitors such as soman (GD) can cause prolonged SE activity, micro-hemorrhage and cell death in the hippocampus, thalamus and piriform cortex. Neuroinflammation is a prominent feature of brain injury with upregulation of multiple pro-inflammatory cytokines including those of the IL-1 family. The highly pleiotropic pro-inflammatory cytokine interleukin-18 (IL-18) belongs to the IL-1 family of cytokines and can propagate neuroinflammation by promoting immune cell infiltration, leukocyte and lymphocyte activation, and angiogenesis and helps facilitate the transition from the innate to the adaptive immune response. The purpose of this study is to characterize the regional and temporal expression of IL -18 and related factors in the brain following SE in a rat GD seizure model followed by localization of IL-18 to specific cell types. METHODS: The protein levels of IL-18, vascular endothelial growth factor and interferon gamma was quantified in the lysates of injured brain regions up to 72 h following GD-induced SE onset using bead multiplex immunoassays. IL-18 was localized to various cell types using immunohistochemistry and transmission electron microscopy. In addition, macrophage appearance scoring and T-cell quantification was determined using immunohistochemistry. Micro-hemorrhages were identified using hematoxylin and eosin staining of brain sections. RESULTS: Significant increases in IL-18 occurred in the piriform cortex, hippocampus and thalamus following SE. IL-18 was primarily expressed by endothelial cells and astrocytes associated with the damaged neurovascular unit. The increase in IL-18 was not related to macrophage accumulation, neutrophil infiltration or T-cell appearance in the injured tissue. CONCLUSIONS: These data show that IL-18 is significantly upregulated following GD-induced SE and localized primarily to endothelial cells in damaged brain vasculature. IL-18 upregulation occurred following leukocyte/lymphocyte infiltration and in the absence of other IL-18-related cytokines, suggesting another function, potentially for angiogenesis related to GD-induced micro-hemorrhage formation. Further studies at more chronic time points may help to elucidate this function.

8.
Neural Dev ; 7: 34, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23111238

RESUMO

BACKGROUND: Drosophila neurons have dendrites that contain minus-end-out microtubules. This microtubule arrangement is different from that of cultured mammalian neurons, which have mixed polarity microtubules in dendrites. RESULTS: To determine whether Drosophila and mammalian dendrites have a common microtubule organization during development, we analyzed microtubule polarity in Drosophila dendritic arborization neuron dendrites at different stages of outgrowth from the cell body in vivo. As dendrites initially extended, they contained mixed polarity microtubules, like mammalian neurons developing in culture. Over a period of several days this mixed microtubule array gradually matured to a minus-end-out array. To determine whether features characteristic of dendrites were localized before uniform polarity was attained, we analyzed dendritic markers as dendrites developed. In all cases the markers took on their characteristic distribution while dendrites had mixed polarity. An axonal marker was also quite well excluded from dendrites throughout development, although this was perhaps more efficient in mature neurons. To confirm that dendrite character could be acquired in Drosophila while microtubules were mixed, we genetically disrupted uniform dendritic microtubule organization. Dendritic markers also localized correctly in this case. CONCLUSIONS: We conclude that developing Drosophila dendrites initially have mixed microtubule polarity. Over time they mature to uniform microtubule polarity. Dendrite identity is established before the mature microtubule arrangement is attained, during the period of mixed microtubule polarity.


Assuntos
Polaridade Celular/fisiologia , Dendritos/fisiologia , Microtúbulos/metabolismo , Neurônios/citologia , Fatores Etários , Animais , Animais Geneticamente Modificados , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Polaridade Celular/genética , Dendritos/ultraestrutura , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião não Mamífero , Recuperação de Fluorescência Após Fotodegradação , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde , Larva , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/genética , Mitocôndrias/metabolismo , Interferência de RNA/fisiologia , Ribossomos/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa