Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Nature ; 602(7896): 336-342, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110733

RESUMO

By catalysing the microbial formation of methane, methyl-coenzyme M reductase has a central role in the global levels of this greenhouse gas1,2. The activity of methyl-coenzyme M reductase is profoundly affected by several unique post-translational modifications3-6, such as  a unique C-methylation reaction catalysed by methanogenesis marker protein 10 (Mmp10), a radical S-adenosyl-L-methionine (SAM) enzyme7,8. Here we report the spectroscopic investigation and atomic resolution structure of Mmp10 from Methanosarcina acetivorans, a unique B12 (cobalamin)-dependent radical SAM enzyme9. The structure of Mmp10 reveals a unique enzyme architecture with four metallic centres and critical structural features involved in the control of catalysis. In addition, the structure of the enzyme-substrate complex offers a glimpse into a B12-dependent radical SAM enzyme in a precatalytic state. By combining electron paramagnetic resonance spectroscopy, structural biology and biochemistry, our study illuminates the mechanism by which the emerging superfamily of B12-dependent radical SAM enzymes catalyse chemically challenging alkylation reactions and identifies distinctive active site rearrangements to provide a structural rationale for the dual use of the SAM cofactor for radical and nucleophilic chemistry.


Assuntos
Proteínas Arqueais , Methanosarcina , S-Adenosilmetionina , Proteínas Arqueais/química , Espectroscopia de Ressonância de Spin Eletrônica , Methanosarcina/enzimologia , Metilação , Conformação Proteica , Processamento de Proteína Pós-Traducional , S-Adenosilmetionina/química , Vitamina B 12
2.
Nat Chem Biol ; 20(3): 382-391, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38158457

RESUMO

D-Amino acid residues, found in countless peptides and natural products including ribosomally synthesized and post-translationally modified peptides (RiPPs), are critical for the bioactivity of several antibiotics and toxins. Recently, radical S-adenosyl-L-methionine (SAM) enzymes have emerged as the only biocatalysts capable of installing direct and irreversible epimerization in RiPPs. However, the mechanism underpinning this biochemical process is ill-understood and the structural basis for this post-translational modification remains unknown. Here we report an atomic-resolution crystal structure of a RiPP-modifying radical SAM enzyme in complex with its substrate properly positioned in the active site. Crystallographic snapshots, size-exclusion chromatography-small-angle x-ray scattering, electron paramagnetic resonance spectroscopy and biochemical analyses reveal how epimerizations are installed in RiPPs and support an unprecedented enzyme mechanism for peptide epimerization. Collectively, our study brings unique perspectives on how radical SAM enzymes interact with RiPPs and catalyze post-translational modifications in natural products.


Assuntos
Produtos Biológicos , S-Adenosilmetionina , Aminoácidos , Antibacterianos , Peptídeos
3.
J Biol Chem ; 300(1): 105578, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110036

RESUMO

In Gram-positive bacteria, cell wall polysaccharides (CWPS) play critical roles in bacterial cell wall homeostasis and bacterial interactions with their immediate surroundings. In lactococci, CWPS consist of two components: a conserved rhamnan embedded in the peptidoglycan layer and a surface-exposed polysaccharide pellicle (PSP), which are linked together to form a large rhamnose-rich CWPS (Rha-CWPS). PSP, whose structure varies from strain to strain, is a receptor for many bacteriophages infecting lactococci. Here, we examined the first two steps of PSP biosynthesis, using in vitro enzymatic tests with lipid acceptor substrates combined with LC-MS analysis, AlfaFold2 modeling of protein 3D-structure, complementation experiments, and phage assays. We show that the PSP repeat unit is assembled on an undecaprenyl-monophosphate (C55P) lipid intermediate. Synthesis is initiated by the WpsA/WpsB complex with GlcNAc-P-C55 synthase activity and the PSP precursor GlcNAc-P-C55 is then elongated by specific glycosyltransferases that vary among lactococcal strains, resulting in PSPs with diverse structures. Also, we engineered the PSP biosynthesis pathway in lactococci to obtain a chimeric PSP structure, confirming the predicted glycosyltransferase specificities. This enabled us to highlight the importance of a single sugar residue of the PSP repeat unit in phage recognition. In conclusion, our results support a novel pathway for PSP biosynthesis on a lipid-monophosphate intermediate as an extracellular modification of rhamnan, unveiling an assembly machinery for complex Rha-CWPS with structural diversity in lactococci.


Assuntos
Parede Celular , Lactococcus , Polissacarídeos Bacterianos , Ramnose , Proteínas de Bactérias/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Glicosiltransferases/metabolismo , Lactococcus/classificação , Lactococcus/citologia , Lactococcus/metabolismo , Lactococcus/virologia , Lipídeos , Peptidoglicano/metabolismo , Polissacarídeos Bacterianos/metabolismo , Conformação Proteica , Ramnose/metabolismo , Especificidade por Substrato , Bacteriófagos/fisiologia
4.
J Am Chem Soc ; 146(10): 6493-6505, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38426440

RESUMO

PylB is a radical S-adenosyl-l-methionine (SAM) enzyme predicted to convert l-lysine into (3R)-3-methyl-d-ornithine, a precursor in the biosynthesis of the 22nd proteogenic amino acid pyrrolysine. This protein highly resembles that of the radical SAM tyrosine and tryptophan lyases, which activate their substrate by abstracting a H atom from the amino-nitrogen position. Here, combining in vitro assays, analytical methods, electron paramagnetic resonance spectroscopy, and theoretical methods, we demonstrated that instead, PylB activates its substrate by abstracting a H atom from the Cγ position of l-lysine to afford the radical-based ß-scission. Strikingly, we also showed that PylB catalyzes the reverse reaction, converting (3R)-3-methyl-d-ornithine into l-lysine and using catalytic amounts of the 5'-deoxyadenosyl radical. Finally, we identified significant in vitro production of 5'-thioadenosine, an unexpected shunt product that we propose to result from the quenching of the 5'-deoxyadenosyl radical species by the nearby [Fe4S4] cluster.


Assuntos
Metionina , Ornitina/análogos & derivados , S-Adenosilmetionina , S-Adenosilmetionina/metabolismo , Lisina , Racemetionina , Espectroscopia de Ressonância de Spin Eletrônica
5.
Chemistry ; 28(31): e202200627, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35253932

RESUMO

B12 -dependent radical SAM enzymes are an emerging enzyme family with approximately 200,000 proteins. These enzymes have been shown to catalyze chemically challenging reactions such as methyl transfer to sp2- and sp3-hybridized carbon atoms. However, to date we have little information regarding their complex mechanisms and their biosynthetic potential. Here we show, using X-ray absorption spectroscopy, mutagenesis and synthetic probes that the vitamin B12 -dependent radical SAM enzyme TsrM catalyzes not only C- but also N-methyl transfer reactions further expanding its synthetic versatility. We also demonstrate that TsrM has the unique ability to directly transfer a methyl group to the benzyl core of tryptophan, including the least reactive position C4. Collectively, our study supports that TsrM catalyzes non-radical reactions and establishes the usefulness of radical SAM enzymes for novel biosynthetic schemes including serial alkylation reactions at particularly inert C-H bonds.


Assuntos
Metiltransferases , S-Adenosilmetionina , Metilação , Metiltransferases/metabolismo , S-Adenosilmetionina/química , Triptofano/química , Vitamina B 12/química
6.
J Proteome Res ; 20(3): 1522-1534, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33528260

RESUMO

The gut microbiota are increasingly considered as a main partner of human health. Metaproteomics enables us to move from the functional potential revealed by metagenomics to the functions actually operating in the microbiome. However, metaproteome deciphering remains challenging. In particular, confident interpretation of a myriad of MS/MS spectra can only be pursued with smart database searches. Here, we compare the interpretation of MS/MS data sets from 48 individual human gut microbiomes using three interrogation strategies of the dedicated Integrated nonredundant Gene Catalog (IGC 9.9 million genes from 1267 individual fecal samples) together with the Homo sapiens database: the classical single-step interrogation strategy and two iterative strategies (in either two or three steps) aimed at preselecting a reduced-sized, more targeted search space for the final peptide spectrum matching. Both iterative searches outperformed the single-step classical search in terms of the number of peptides and protein clusters identified and the depth of taxonomic and functional knowledge, and this was the most convincing with the three-step approach. However, iterative searches do not help in reducing variability of repeated analyses, which is inherent to the traditional data-dependent acquisition mode, but this variability did not affect the hierarchical relationship between replicates and all other samples.


Assuntos
Microbioma Gastrointestinal , Microbiota , Microbioma Gastrointestinal/genética , Humanos , Metagenômica , Proteômica , Espectrometria de Massas em Tandem
7.
J Biol Chem ; 295(49): 16665-16677, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32972973

RESUMO

Despite its major importance in human health, the metabolic potential of the human gut microbiota is still poorly understood. We have recently shown that biosynthesis of Ruminococcin C (RumC), a novel ribosomally synthesized and posttranslationally modified peptide (RiPP) produced by the commensal bacterium Ruminococcus gnavus, requires two radical SAM enzymes (RumMC1 and RumMC2) catalyzing the formation of four Cα-thioether bridges. These bridges, which are essential for RumC's antibiotic properties against human pathogens such as Clostridium perfringens, define two hairpin domains giving this sactipeptide (sulfur-to-α-carbon thioether-containing peptide) an unusual architecture among natural products. We report here the biochemical and spectroscopic characterizations of RumMC2. EPR spectroscopy and mutagenesis data support that RumMC2 is a member of the large family of SPASM domain radical SAM enzymes characterized by the presence of three [4Fe-4S] clusters. We also demonstrate that this enzyme initiates its reaction by Cα H-atom abstraction and is able to catalyze the formation of nonnatural thioether bonds in engineered peptide substrates. Unexpectedly, our data support the formation of a ketoimine rather than an α,ß-dehydro-amino acid intermediate during Cα-thioether bridge LC-MS/MS fragmentation. Finally, we explored the roles of the leader peptide and of the RiPP precursor peptide recognition element, present in myriad RiPP-modifying enzymes. Collectively, our data support a more complex role for the peptide recognition element and the core peptide for the installation of posttranslational modifications in RiPPs than previously anticipated and suggest a possible reaction intermediate for thioether bond formation.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriocinas/metabolismo , Clostridiales/metabolismo , Microbiota , Sulfetos/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacteriocinas/química , Bacteriocinas/genética , Biocatálise , Cromatografia Líquida de Alta Pressão , Humanos , Cinética , Família Multigênica , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Motivo Estéril alfa , Especificidade por Substrato , Sulfetos/análise , Sulfetos/metabolismo , Espectrometria de Massas em Tandem
8.
J Bacteriol ; 202(5)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31818924

RESUMO

The Bacillus subtilis MntR and Zur transcriptional regulators control homeostasis of manganese and zinc, two essential elements required in various cellular processes. In this work, we describe the global impact of mntR and zur deletions at the protein level. Using a comprehensive proteomic approach, we showed that 33 and 55 proteins are differentially abundant in ΔmntR and Δzur cells, respectively, including proteins involved in metal acquisition, translation, central metabolism, and cell wall homeostasis. In addition, both mutants showed modifications in intracellular metal ion pools, with significant Mg2+ accumulation in the ΔmntR mutant. Phenotypic and morphological analyses of ΔmntR and Δzur mutants revealed their high sensitivity to lysozyme, beta-lactam antibiotics, and external oxidative stress. Mutant strains had a modified cell wall thickness and accumulated lower levels of intracellular reactive oxygen species (ROS) than the wild-type strain. Remarkably, our results highlight an intimate connection between MntR, Zur, antibiotic sensitivity, and cell wall structure.IMPORTANCE Manganese and zinc are essential transition metals involved in many fundamental cellular processes, including protection against external oxidative stress. In Bacillus subtilis, Zur and MntR are key transcriptional regulators of zinc and manganese homeostasis, respectively. In this work, proteome analysis of B. subtilis wild-type, ΔmntR, and Δzur strains provided new insights into bacterial adaptation to deregulation of essential metal ions. Deletions of mntR and zur genes increased bacterial sensitivity to lysozyme, beta-lactam antibiotics, and external oxidative stress and impacted the cell wall thickness. Overall, these findings highlight that Zur and MntR regulatory networks are connected to antibiotic sensitivity and cell wall plasticity.


Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/fisiologia , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Oxirredução , Proteínas Repressoras/genética , Bacillus subtilis/ultraestrutura , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Interação Gene-Ambiente , Homeostase , Metais/metabolismo , Mutação , Proteômica , Proteínas Repressoras/metabolismo , Estresse Fisiológico
9.
J Biol Chem ; 294(40): 14512-14525, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31337708

RESUMO

The human microbiota plays a central role in human physiology. This complex ecosystem is a promising but untapped source of bioactive compounds and antibiotics that are critical for its homeostasis. However, we still have a very limited knowledge of its metabolic and biosynthetic capabilities. Here we investigated an enigmatic biosynthetic gene cluster identified previously in the human gut symbiont Ruminococcus gnavus This gene cluster which encodes notably for peptide precursors and putative radical SAM enzymes, has been proposed to be responsible for the biosynthesis of ruminococcin C (RumC), a ribosomally synthesized and posttranslationally modified peptide (RiPP) with potent activity against the human pathogen Clostridium perfringens By combining in vivo and in vitro approaches, including recombinant expression and purification of the respective peptides and proteins, enzymatic assays, and LC-MS analyses, we determined that RumC is a sulfur-to-α-carbon thioether-containing peptide (sactipeptide) with an unusual architecture. Moreover, our results support that formation of the thioether bridges follows a processive order, providing mechanistic insights into how radical SAM (AdoMet) enzymes install posttranslational modifications in RiPPs. We also found that the presence of thioether bridges and removal of the leader peptide are required for RumC's antimicrobial activity. In summary, our findings provide evidence that production of the anti-Clostridium peptide RumC depends on an R. gnavus operon encoding five potential RumC precursor peptides and two radical SAM enzymes, uncover key RumC structural features, and delineate the sequence of posttranslational modifications leading to its formation and antimicrobial activity.


Assuntos
Bacteriocinas/química , Clostridiales/genética , Clostridium perfringens/genética , Microbioma Gastrointestinal/genética , Peptídeos/genética , Sequência de Aminoácidos/genética , Bacteriocinas/biossíntese , Bacteriocinas/genética , Clostridiales/enzimologia , Clostridium perfringens/química , Clostridium perfringens/patogenicidade , Humanos , Família Multigênica/genética , Biossíntese Peptídica/genética , Peptídeos/química , Processamento de Proteína Pós-Traducional/genética , Ribossomos/genética , Motivo Estéril alfa/genética , Sulfetos/química , Simbiose/genética
10.
J Biol Chem ; 292(26): 10835-10844, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28476884

RESUMO

Radical S-adenosylmethionine (SAM) enzymes are emerging as a major superfamily of biological catalysts involved in the biosynthesis of the broad family of bioactive peptides called ribosomally synthesized and post-translationally modified peptides (RiPPs). These enzymes have been shown to catalyze unconventional reactions, such as methyl transfer to electrophilic carbon atoms, sulfur to Cα atom thioether bonds, or carbon-carbon bond formation. Recently, a novel radical SAM enzyme catalyzing the formation of a lysine-tryptophan bond has been identified in Streptococcus thermophilus, and a reaction mechanism has been proposed. By combining site-directed mutagenesis, biochemical assays, and spectroscopic analyses, we show here that this enzyme, belonging to the emerging family of SPASM domain radical SAM enzymes, likely contains three [4Fe-4S] clusters. Notably, our data support that the seven conserved cysteine residues, present within the SPASM domain, are critical for enzyme activity. In addition, we uncovered the minimum substrate requirements and demonstrate that KW cyclic peptides are more widespread than anticipated, notably in pathogenic bacteria. Finally, we show a strict specificity of the enzyme for lysine and tryptophan residues and the dependence of an eight-amino acid leader peptide for activity. Altogether, our study suggests novel mechanistic links among SPASM domain radical SAM enzymes and supports the involvement of non-cysteinyl ligands in the coordination of auxiliary clusters.


Assuntos
Proteínas de Bactérias/química , Proteínas Ferro-Enxofre/química , Streptococcus thermophilus/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Lisina/química , Lisina/metabolismo , Domínios Proteicos , Streptococcus thermophilus/genética , Triptofano/química , Triptofano/metabolismo
11.
J Am Chem Soc ; 140(7): 2469-2477, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29253341

RESUMO

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing family of bioactive peptides. Among RiPPs, the bacterial toxin polytheonamide A is characterized by a unique set of post-translational modifications catalyzed by novel radical S-adenosyl-l-methionine (SAM) enzymes. Here we show that the radical SAM enzyme PoyD catalyzes in vitro polytheonamide epimerization in a C-to-N directional manner. By combining mutagenesis experiments with labeling studies and investigating the enzyme substrate promiscuity, we deciphered in detail the mechanism of PoyD. We notably identified a critical cysteine residue as a likely key H atom donor and demonstrated that PoyD belongs to a distinct family of radical SAM peptidyl epimerases. In addition, our study shows that the core peptide directly influences the epimerization pattern allowing for production of peptides with unnatural epimerization patterns.

12.
Environ Microbiol ; 19(9): 3579-3594, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28695648

RESUMO

Bacterial adhesion is a critical step for colonization of the host. The pioneer colonizer and commensal bacterium of the human gastrointestinal tract, Streptococcus salivarius, has strong adhesive properties but the molecular determinants of this adhesion remain uncharacterized. Serine-rich repeat (SRR) glycoproteins are a family of adhesins that fulfil an important role in adhesion. In general, Gram-positive bacterial genomes have a unique SRR glycoprotein-encoding gene. We demonstrate that S. salivarius expresses three large and glycosylated surface-exposed proteins - SrpA, SrpB and SrpC - that show characteristics of SRR glycoproteins and are secreted through the accessory SecA2/Y2 system. Two glycosyltransferases - GtfE/F - encoded outside of the secA2/Y2 locus, unusually, perform the first step of the sequential glycosylation process, which is crucial for SRR activity. We show that SrpB and SrpC play complementary adhesive roles involved in several steps of the colonization process: auto-aggregation, biofilm formation and adhesion to a variety of host epithelial cells and components. We also show that at least one of the S. salivarius SRR glycoproteins is important for colonization in mice. SrpA, SrpB and SrpC are the main factors underlying the multifaceted adhesion of S. salivarius and, therefore, play a major role in host colonization.


Assuntos
Adesinas Bacterianas/metabolismo , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/metabolismo , Mucosa Intestinal/microbiologia , Glicoproteínas de Membrana/metabolismo , Streptococcus salivarius/patogenicidade , Animais , Aderência Bacteriana/genética , Células Epiteliais/microbiologia , Trato Gastrointestinal/microbiologia , Glucosiltransferases/genética , Glicosilação , Humanos , Masculino , Camundongos , Modelos Animais , Streptococcus salivarius/genética , Streptococcus salivarius/metabolismo
13.
J Proteome Res ; 15(9): 3214-24, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27439475

RESUMO

We report here the use of a peptidomic approach to revisit the extracellular proteolysis of Lactococcus lactis. More than 1800 distinct peptides accumulate externally during growth of the plasmid-free protease-negative strain L. lactis IL1403 in a protein- and peptide-free medium. These peptides mainly originate from cell-surface- and cytoplasmic-located proteins, despite the fact that no cell lysis could be evidenced. Positioning each identified peptide on its parental protein sequence demonstrated the involvement of exo- and endopeptidase activities. The endopeptidases responsible for the release of surface and cytoplasmic peptides had distinct specificities. The membrane-anchored protease HtrA was responsible for the release of only a part of the surface peptides, and its preference for branched-chain amino acids in the N-terminal side of the cleaved bond was established in situ. Other yet uncharacterized surface proteases were also involved. Several lines of evidence suggest that surface and cytoplasmic peptides were produced by different routes, at least part of the latter being most likely excreted as peptides from the cells. The mechanism by which these cytoplasmic peptides are excreted remains an open question, as it is still the case for excreted cytoplasmic proteins.


Assuntos
Peptídeos/metabolismo , Proteólise , Proteômica/métodos , Aminoácidos de Cadeia Ramificada/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/enzimologia , Citoplasma/enzimologia , Espectrometria de Massas , Peptídeo Hidrolases/metabolismo , Peptídeos/análise , Serina Endopeptidases/metabolismo
14.
J Am Chem Soc ; 138(48): 15515-15518, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27934015

RESUMO

Genomic and metagenomic investigations have recently led to the delineation of a novel class of natural products called ribosomally synthesized and post-translationally modified peptides (RiPPs). RiPPs are ubiquitous among living organisms and include pharmaceutically relevant compounds such as antibiotics and toxins. A prominent example is polytheonamide A, which exhibits numerous post-translational modifications, some of which were unknown in ribosomal peptides until recently. Among these post-translational modifications, C-methylations have been proposed to be catalyzed by two putative radical S-adenosylmethionine (rSAM) enzymes, PoyB and PoyC. Here we report the in vitro activity of PoyC, the first B12-dependent rSAM enzyme catalyzing peptide Cß-methylation. We show that PoyC catalyzes the formation of S-adenosylhomocysteine and 5'-deoxyadenosine and the transfer of a methyl group to l-valine residue. In addition, we demonstrate for the first time that B12-rSAM enzymes have a tightly bound MeCbl cofactor that during catalysis transfers a methyl group originating from S-adenosyl-l-methionine. Collectively, our results shed new light on polytheonamide biosynthesis and the large and emerging family of B12-rSAM enzymes.


Assuntos
Biocatálise , Metiltransferases/metabolismo , Proteínas/metabolismo , S-Adenosilmetionina/metabolismo , Vitamina B 12/metabolismo , Radicais Livres/química , Radicais Livres/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Metilação , Metiltransferases/química , Conformação Molecular , Proteínas/química , S-Adenosilmetionina/química , Vitamina B 12/química
15.
BMC Microbiol ; 16(1): 190, 2016 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-27542896

RESUMO

BACKGROUND: Cyclodipeptides and their derivatives constitute a large class of peptide natural products with noteworthy biological activities. In some yeasts and bacterial species, pulcherriminic acid derived from cyclo-L-leucyl-L-leucyl is excreted and chelates free ferric ions to form the pulcherrimin. In Bacillus subtilis, the enzymes YvmC and CypX are known to be involved in pulcherriminic acid biosynthesis. However, the mechanisms controlling the transcription of the yvmC-cypX operon are still unknown. RESULTS: In this work, we demonstrated that the B. subtilis YvmB MarR-like regulator is the major transcription factor controlling yvmC-cypX expression. A comprehensive quantitative proteomic analysis revealed a wide and prominent effect of yvmB deletion on proteins involved in cellular processes depending on iron availability. In addition, expression of yvmB depends on iron availability. Further analysis with real-time in vivo transcriptional profiling allowed us to define the YvmB regulon. We identified yvmBA, yvmC-cypX and yvnB for negative regulation and yisI for positive regulation. In combination with genetic approaches, gel mobility shift assays indicated that a 14-bp palindromic motif constitutes the YvmB binding site. It was unexpected that YvmB controls expression of yisI, whose encoding protein plays a negative role in the regulation of the sporulation initiation pathway. YvmB appears as an additional regulatory element into the cell's decision to grow or sporulate. CONCLUSION: Our findings reveal a possible role of the B. subtilis YvmB regulator in the regulatory networks connected to iron metabolism and to the control of proper timing of sporulation. YvmB was renamed as PchR controlling the pulcherriminic acid biosynthetic pathway of B. subtilis.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Pirazinas/metabolismo , Fatores de Transcrição/genética , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Deleção de Genes , Perfilação da Expressão Gênica , Fusão Gênica , Redes Reguladoras de Genes , Ferro/metabolismo , Redes e Vias Metabólicas , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
16.
Mol Cell Proteomics ; 13(9): 2168-82, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24797265

RESUMO

Serine-rich (Srr) proteins exposed at the surface of Gram-positive bacteria are a family of adhesins that contribute to the virulence of pathogenic staphylococci and streptococci. Lectin-binding experiments have previously shown that Srr proteins are heavily glycosylated. We report here the first mass-spectrometry analysis of the glycosylation of Streptococcus agalactiae Srr1. After Srr1 enrichment and trypsin digestion, potential glycopeptides were identified in collision induced dissociation spectra using X! Tandem. The approach was then refined using higher energy collisional dissociation fragmentation which led to the simultaneous loss of sugar residues, production of diagnostic oxonium ions and backbone fragmentation for glycopeptides. This feature was exploited in a new open source software tool (SpectrumFinder) developed for this work. By combining these approaches, 27 glycopeptides corresponding to six different segments of the N-terminal region of Srr1 [93-639] were identified. Our data unambiguously indicate that the same protein residue can be modified with different glycan combinations including N-acetylhexosamine, hexose, and a novel modification that was identified as O-acetylated-N-acetylhexosamine. Lectin binding and monosaccharide composition analysis strongly suggested that HexNAc and Hex correspond to N-acetylglucosamine and glucose, respectively. The same protein segment can be modified with a variety of glycans generating a wide structural diversity of Srr1. Electron transfer dissociation was used to assign glycosylation sites leading to the unambiguous identification of six serines and one threonine residues. Analysis of purified Srr1 produced in mutant strains lacking accessory glycosyltransferase encoding genes demonstrates that O-GlcNAcylation is an initial step in Srr1 glycosylation that is likely required for subsequent decoration with Hex. In summary, our data obtained by a combination of fragmentation mass spectrometry techniques associated to a new software tool, demonstrate glycosylation heterogeneity of Srr1, characterize a new protein modification, and identify six glycosylation sites located in the N-terminal region of the protein.


Assuntos
Adesinas Bacterianas/metabolismo , Adesinas Bacterianas/química , Cromatografia Líquida , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Glicosilação , Monossacarídeos/análise , Serina , Software , Streptococcus agalactiae/metabolismo , Espectrometria de Massas em Tandem
17.
Proteomics ; 15(20): 3532-43, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26260998

RESUMO

Two parallel anaerobic digestion lines were designed to match a "bovid-like" digestive structure. Each of the lines consisted of two continuous stirred tank reactors placed in series and separated by an acidic treatment step. The first line was inoculated with industrial inocula whereas the second was seeded with cow digestive tract contents. After 3 months of continuous sewage sludge feeding, samples were recovered for shotgun metaproteomic and DNA-based analysis. Strikingly, protein-inferred and 16S ribosomal DNA tags based taxonomic community profiles were not consistent. PCA however revealed a similar clustering pattern of the samples, suggesting that reproducible methodological and/or biological factors underlie this observation. The performances of the two digestion lines did not differ significantly and the cow-derived inocula did not establish in the reactors. A low throughput metagenomic dataset (3.4 × 10(6) reads, 1.1 Gb) was also generated for one of the samples. It allowed a substantial increase of the analysis depth (11 vs. 4% of spectral identification rate for the combined samples). Surprisingly, a high proportion of proteins from members of the "Candidatus Competibacter" group, a key microbial player usually found in activated sludge plants, was retrieved in our anaerobic digester samples. Data are available via ProteomeXchange with identifier PXD002420 (http://proteomecentral.proteomexchange.org/dataset/PXD002420).


Assuntos
Anaerobiose/genética , Biomimética , Metagenômica , Esgotos/microbiologia , Reatores Biológicos , Biologia Computacional , RNA Ribossômico 16S/genética
18.
Plant Cell Physiol ; 56(7): 1374-87, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25907570

RESUMO

In oleaginous seeds, lipids--stored in organelles called oil bodies (OBs)--are degraded post-germinatively to provide carbon and energy for seedling growth. To date, little is known about how OB coat proteins, known as oleosins, control OB dynamics during seed germination. Here, we demonstrated that the sequential proteolysis of the five Arabidopsis thaliana oleosins OLE1-OLE5 begins just prior to lipid degradation. Several post-translational modifications (e.g. phosphorylation and ubiquination) of oleosins were concomitant with oleosin degradation. Phosphorylation occurred only on the minor OLE5 and on an 8 kDa proteolytic fragment of OLE2. A combination of immunochemical and proteomic approaches revealed ubiquitination of the four oleosins OLE1-OLE4 at the onset of OB mobilization. Ubiquitination topology was surprisingly complex. OLE1 and OLE2 were modified by three distinct and predominantly exclusive motifs: monoubiquitin, K48-linked diubiquitin (K48Ub(2)) and K63-linked diubiquitin. Ubiquitinated oleosins may be channeled towards specific degradation pathways according to ubiquitination type. One of these pathways was identified as the ubiquitin-proteasome pathway. A proteasome inhibitor (MG132) reduced oleosin degradation and induced cytosolic accumulation of K48Ub(2)-oleosin aggregates. These results indicate that K48Ub(2)-modified oleosins are selectively extracted from OB coat and degraded by the proteasome. Proteasome inhibition also reduced lipid hydrolysis, providing in vivo evidence that oleosin degradation is required for lipid mobilization.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Gotículas Lipídicas/metabolismo , Plântula/metabolismo , Ubiquitina/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Inibidores de Cisteína Proteinase/farmacologia , Germinação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Immunoblotting , Leupeptinas/farmacologia , Microscopia Confocal , Fosforilação , Plantas Geneticamente Modificadas , Complexo de Endopeptidases do Proteassoma/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteólise/efeitos dos fármacos , Proteômica/métodos , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Fatores de Tempo , Ubiquitinação
19.
Plant Physiol ; 166(4): 1709-12, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25352273

RESUMO

Cellulose synthesis is driven by large plasma membrane-inserted protein complexes, which in plants have 6-fold symmetry. In Arabidopsis (Arabidopsis thaliana), functional cellulose synthesis complexes (CSCs) are composed of at least three different cellulose synthase catalytic subunits (CESAs), but the actual ratio of the CESA isoforms within the CSCs remains unresolved. In this work, the stoichiometry of the CESAs in the primary cell wall CSC was determined, after elimination of CESA redundancy in a mutant background, by coimmunoprecipitation and mass spectrometry using label-free quantitative methods. Based on spectral counting, we show that CESA1, CESA3, and CESA6 are present in a 1:1:1 molecular ratio.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Glucosiltransferases/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Domínio Catalítico , Parede Celular/metabolismo , Glucosiltransferases/genética , Imunoprecipitação , Isoenzimas , Espectrometria de Massas , Proteínas de Membrana , Proteômica , Plântula/enzimologia , Plântula/genética
20.
Mol Cell Proteomics ; 12(12): 3935-47, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24002364

RESUMO

Surface proteins of Gram-positive bacteria play crucial roles in bacterial adhesion to host tissues. Regarding commensal or probiotic bacteria, adhesion to intestinal mucosa may promote their persistence in the gastro-intestinal tract and their beneficial effects to the host. In this study, seven Lactococcus lactis strains exhibiting variable surface physico-chemical properties were compared for their adhesion to Caco-2 intestinal epithelial cells. In this test, only one vegetal isolate TIL448 expressed a high-adhesion phenotype. A nonadhesive derivative was obtained by plasmid curing from TIL448, indicating that the adhesion determinants were plasmid-encoded. Surface-exposed proteins in TIL448 were analyzed by a proteomic approach consisting in shaving of the bacterial surface with trypsin and analysis of the released peptides by LC-MS/MS. As the TIL448 complete genome sequence was not available, the tryptic peptides were identified by a mass matching approach against a database including all Lactococcus protein sequences and the sequences deduced from partial DNA sequences of the TIL448 plasmids. Two surface proteins, encoded by plasmids in TIL448, were identified as candidate adhesins, the first one displaying pilin characteristics and the second one containing two mucus-binding domains. Inactivation of the pilin gene abolished adhesion to Caco-2 cells whereas inactivation of the mucus-binding protein gene had no effect on adhesion. The pilin gene is located inside a cluster of four genes encoding two other pilin-like proteins and one class-C sortase. Synthesis of pili was confirmed by immunoblotting detection of high molecular weight forms of pilins associated to the cell wall as well as by electron and atomic force microscopy observations. As a conclusion, surface proteome analysis allowed us to detect pilins at the surface of L. lactis TIL448. Moreover we showed that pili appendages are formed and involved in adhesion to Caco-2 intestinal epithelial cells.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Regulação Bacteriana da Expressão Gênica , Lactococcus lactis/genética , Proteoma/genética , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Sequência de Aminoácidos , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Células CACO-2 , Cromatografia Líquida , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/ultraestrutura , Humanos , Intestinos/citologia , Intestinos/microbiologia , Lactococcus lactis/metabolismo , Lactococcus lactis/ultraestrutura , Microscopia Eletrônica , Anotação de Sequência Molecular , Dados de Sequência Molecular , Família Multigênica , Fragmentos de Peptídeos/análise , Plasmídeos , Probióticos/química , Proteólise , Proteoma/metabolismo , Espectrometria de Massas em Tandem , Tripsina/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa