Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
BMC Microbiol ; 24(1): 228, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943070

RESUMO

BACKGROUND: Mangroves are complex and dynamic coastal ecosystems under frequent fluctuations in physicochemical conditions related to the tidal regime. The frequent variation in organic matter concentration, nutrients, and oxygen availability, among other factors, drives the microbial community composition, favoring syntrophic populations harboring a rich and diverse, stress-driven metabolism. Mangroves are known for their carbon sequestration capability, and their complex and integrated metabolic activity is essential to global biogeochemical cycling. Here, we present a metabolic reconstruction based on the genomic functional capability and flux profile between sympatric MAGs co-assembled from a tropical restored mangrove. RESULTS: Eleven MAGs were assigned to six Bacteria phyla, all distantly related to the available reference genomes. The metabolic reconstruction showed several potential coupling points and shortcuts between complementary routes and predicted syntrophic interactions. Two metabolic scenarios were drawn: a heterotrophic scenario with plenty of carbon sources and an autotrophic scenario with limited carbon sources or under inhibitory conditions. The sulfur cycle was dominant over methane and the major pathways identified were acetate oxidation coupled to sulfate reduction, heterotrophic acetogenesis coupled to carbohydrate catabolism, ethanol production and carbon fixation. Interestingly, several gene sets and metabolic routes similar to those described for wastewater and organic effluent treatment processes were identified. CONCLUSION: The mangrove microbial community metabolic reconstruction reflected the flexibility required to survive in fluctuating environments as the microhabitats created by the tidal regime in mangrove sediments. The metabolic components related to wastewater and organic effluent treatment processes identified strongly suggest that mangrove microbial communities could represent a resourceful microbial model for biotechnological applications that occur naturally in the environment.


Assuntos
Bactérias , Microbiota , Áreas Alagadas , Microbiota/genética , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Filogenia , Processos Heterotróficos , Ciclo do Carbono , Carbono/metabolismo , Metano/metabolismo , Processos Autotróficos , Redes e Vias Metabólicas/genética
2.
Int Microbiol ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388811

RESUMO

Mangroves are complex land-sea transition ecosystems whose microbiota are essential for their nutrient recycling and conservation. Brazil is the third-largest estuarine area in the world and "Baía de Todos os Santos" (BTS) is one of the largest bays of the country, with wide anthropogenic exploration. Using a metagenomic approach, we investigated composition and functional adaptability as signatures of the microbiome of pristine and anthropized areas of BTS, including those under petroleum refinery influence. The taxonomic analysis showed dominance of sulfate-reducing Desulfobacteraceae, Rhodobacteraceae, and Flavobacteriaceae. Taxa were significantly diverse between pristine and disturbed areas. Disturbed mangroves showed a notary increase in abundance of halophilic, sulfur-related, and hydrocarbon-degrading genera and a decrease in diatoms compared to pristine area. The metabolic profile of BTS mangroves was correlated with the differentially abundant microbiota. Two ecological scenarios were observed: one marked by functions of central metabolism associated with biomass degradation and another by mechanisms of microbial adaptability to pollution conditions and environmental degradation. Part of the microbiome was distinct and not abundant in Brazilian estuarine soils. The microbiome signature observed in each BTS mangrove reflects how human actions impact the diversity of these ecosystems and also emphasize their role in attempting to restore disturbed mangroves. The microbiome may act as a potential biological indicator of the preservation status of these soils, despite the limitation of soil property conditions. Additionally, our data pointed to metagenomics as an additional tool for environmental assessment and reinforced the need for protective measures for the mangroves under study.

3.
Metab Brain Dis ; 39(5): 915-928, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38836947

RESUMO

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease globally, with a fast-growing prevalence. The etiology of PD exhibits a multifactorial complex nature and remains challenging. Herein, we described clinical, molecular, and integrative bioinformatics findings from a Brazilian female affected by Early-Onset PD (EOPD) harboring a recurrent homozygous pathogenic deletion in the parkin RBR E3 ubiquitin protein ligase gene (PRKN; NM_004562.3:c.155delA; p.Asn52Metfs*29; rs754809877), along with a novel heterozygous variant in the synaptojanin 1 gene (SYNJ1; NM_003895.3:c.62G > T; p.Cys21Phe; rs1486511197) found by Whole Exome Sequencing. Uncommon or unreported PRKN-related clinical features in the patient include cognitive decline, auditory and visual hallucinations, REM sleep disorder, and depression, previously observed in SYNJ1-related conditions. Moreover, PRKN interacts with endophilin A1, which is a major binding partner of SYNJ1. This protein plays a pivotal role in regulating the dynamics of synaptic vesicles, particularly in the context of endocytosis and recycling processes. Altogether, our comprehensive analyses underscore a potential synergistic effect between the PRKN and SYNJ1 variants over the pathogenesis of EOPD.


Assuntos
Doença de Parkinson , Ubiquitina-Proteína Ligases , Humanos , Doença de Parkinson/genética , Feminino , Ubiquitina-Proteína Ligases/genética , Adulto , Idade de Início , Proteínas do Tecido Nervoso/genética , Monoéster Fosfórico Hidrolases
4.
Mol Med ; 28(1): 153, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36510129

RESUMO

BACKGROUND: Multisystem Inflammatory Syndrome in Children (MIS-C) is a life-threatening complication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which manifests as a hyper inflammatory process with multiorgan involvement in predominantly healthy children in the weeks following mild or asymptomatic coronavirus disease 2019 (COVID-19). However, host monogenic predisposing factors to MIS-C remain elusive. METHODS: Herein, we used whole exome sequencing (WES) on 16 MIS-C Brazilian patients to identify single nucleotide/InDels variants as predisposition factors associated with MIS-C. RESULTS: We identified ten very rare variants in eight genes (FREM1, MPO, POLG, C6, C9, ABCA4, ABCC6, and BSCL2) as the most promising candidates to be related to a higher risk of MIS-C development. These variants may propitiate a less effective immune response to infection or trigger the inflammatory response or yet a delayed hyperimmune response to SARS-CoV-2. Protein-Protein Interactions (PPIs) among the products of the mutated genes revealed an integrated network, enriched for immune and inflammatory response mechanisms with some of the direct partners representing gene products previously associated with MIS-C and Kawasaki disease (KD). In addition, the PPIs direct partners are also enriched for COVID-19-related gene sets. HLA alleles prediction from WES data allowed the identification of at least one risk allele in 100% of the MIS-C patients. CONCLUSIONS: This study is the first to explore host MIS-C-associated variants in a Latin American admixed population. Besides expanding the spectrum of MIS-C-associated variants, our findings highlight the relevance of using WES for characterising the genetic interindividual variability associated with COVID-19 complications and ratify the presence of overlapping/convergent mechanisms among MIS-C, KD and COVID-19, crucial for future therapeutic management.


Assuntos
COVID-19 , SARS-CoV-2 , Criança , Humanos , COVID-19/complicações , COVID-19/genética , Predisposição Genética para Doença , Síndrome de Resposta Inflamatória Sistêmica/genética , Transportadores de Cassetes de Ligação de ATP
6.
BMC Pediatr ; 22(1): 181, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35382780

RESUMO

BACKGROUND: X-linked agammaglobulinemia (XLA) is an Inborn Errors of Immunity (IEI) characterized by pan-hypogammaglobulinemia and low numbers of B lymphocytes due to mutations in BTK gene. Usually, XLA patients are not susceptible to respiratory tract infections by viruses and do not present interstitial lung disease (ILD) such as bronchiolitis obliterans (BO) as a consequence of acute or chronic bacterial infections of the respiratory tract. Although many pathogenic variants have already been described in XLA, the heterogeneous clinical presentations in affected patients suggest a more complex genetic landscape underlying this disorder. CASE PRESENTATION: We report two pediatric cases from male siblings with X-Linked Agammaglobulinemia and bronchiolitis obliterans, a phenotype not often observed in XLA phenotype. The whole-exome sequencing (WES) analysis showed a rare hemizygous missense variant NM_000061.2(BTK):c.1751G>A(p.Gly584Glu) in BTK gene of both patients. We also identified a gain-of-function mutation in TGFß1 (rs1800471) previously associated with transforming growth factor-beta1 production, fibrotic lung disease, and graft fibrosis after lung transplantation. TGFß1 plays a key role in the regulation of immune processes and inflammatory response associated with pulmonary impairment. CONCLUSIONS: Our report illustrates a possible role for WES in patients with known inborn errors of immunity, but uncommon clinical presentations, providing a personalized understanding of genetic basis, with possible implications in the identification of potential treatments, and prognosis for patients and their families.


Assuntos
Agamaglobulinemia , Bronquiolite Obliterante , Doenças Genéticas Ligadas ao Cromossomo X , Tirosina Quinase da Agamaglobulinemia/genética , Agamaglobulinemia/complicações , Agamaglobulinemia/diagnóstico , Agamaglobulinemia/genética , Criança , Análise Mutacional de DNA , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Humanos , Masculino , Mutação , Irmãos
7.
Int J Mol Sci ; 23(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36362378

RESUMO

Transcriptome studies have reported the dysregulation of cell cycle-related genes and the global inhibition of host mRNA translation in COVID-19 cases. However, the key genes and cellular mechanisms that are most affected by the severe outcome of this disease remain unclear. For this work, the RNA-seq approach was used to study the differential expression in buffy coat cells of two groups of people infected with SARS-CoV-2: (a) Mild, with mild symptoms; and (b) SARS (Severe Acute Respiratory Syndrome), who were admitted to the intensive care unit with the severe COVID-19 outcome. Transcriptomic analysis revealed 1009 up-regulated and 501 down-regulated genes in the SARS group, with 10% of both being composed of long non-coding RNA. Ribosome and cell cycle pathways were enriched among down-regulated genes. The most connected proteins among the differentially expressed genes involved transport dysregulation, proteasome degradation, interferon response, cytokinesis failure, and host translation inhibition. Furthermore, interactome analysis showed Fibrillarin to be one of the key genes affected by SARS-CoV-2. This protein interacts directly with the N protein and long non-coding RNAs affecting transcription, translation, and ribosomal processes. This work reveals a group of dysregulated processes, including translation and cell cycle, as key pathways altered in severe COVID-19 outcomes.


Assuntos
COVID-19 , RNA Longo não Codificante , Humanos , COVID-19/genética , SARS-CoV-2 , Transcriptoma , Perfilação da Expressão Gênica , RNA Longo não Codificante/genética , Ciclo Celular/genética
8.
BMC Microbiol ; 21(1): 294, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711170

RESUMO

BACKGROUND: The Rhizobiales (Proteobacteria) order is an abundant and diverse group of microorganisms, being extensively studied for its lifestyle based on the association with plants, animals, and humans. New studies have demonstrated that the last common ancestor (LCA) of Rhizobiales had a free-living lifestyle, but the phylogenetic and metabolism characterization of basal lineages remains unclear. Here, we used a high-resolution phylogenomic approach to test the monophyly of the Aestuariivirgaceae family, a new taxonomic group of Rhizobiales. Furthermore, a deep metabolic investigation provided an overview of the main functional traits that can be associated with its lifestyle. We hypothesized that the presence of pathways (e.g., Glycolysis/Gluconeogenesis) and the absence of pathogenic genes would be associated with a free-living lifestyle in Aestuariivirgaceae. RESULTS: Using high-resolution phylogenomics approaches, our results revealed a clear separation of Aestuariivirgaceae into a distinct clade of other Rhizobiales family, suggesting a basal split early group and corroborate the monophyly of this group. A deep functional annotation indicated a metabolic versatility, which includes putative genes related to sugar degradation and aerobic respiration. Furthermore, many of these traits could reflect a basal metabolism and adaptations of Rhizobiales, as such the presence of Glycolysis/Gluconeogenesis pathway and the absence of pathogenicity genes, suggesting a free-living lifestyle in the Aestuariivirgaceae members. CONCLUSIONS: Aestuariivirgaceae (Rhizobiales) family is a monophyletic taxon of the Rhizobiales with a free-living lifestyle and a versatile metabolism that allows these microorganisms to survive in the most diverse microbiomes, demonstrating their adaptability to living in systems with different conditions, such as extremely cold environments to tropical rivers.


Assuntos
Metagenoma/genética , Proteobactérias/genética , Evolução Molecular , Sedimentos Geológicos/microbiologia , Redes e Vias Metabólicas , Metagenômica , Filogenia , Proteobactérias/classificação , Proteobactérias/metabolismo , Água do Mar/microbiologia
10.
Biofabrication ; 16(2)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38408383

RESUMO

'On-a-chip' technology advances the development of physiologically relevant organ-mimicking architecture by integrating human cells into three-dimensional microfluidic devices. This method also establishes discrete functional units, faciliting focused research on specific organ components. In this study, we detail the development and assessment of a convoluted renal proximal tubule-on-a-chip (PT-on-a-chip). This platform involves co-culturing Renal Proximal Tubule Epithelial Cells (RPTEC) and Human Umbilical Vein Endothelial Cells (HUVEC) within a polydimethylsiloxane microfluidic device, crafted through a combination of 3D printing and molding techniques. Our PT-on-a-chip significantly reduced high glucose level, exhibited albumin uptake, and simulated tubulopathy induced by amphotericin B. Remarkably, the RPTEC:HUVEC co-culture exhibited efficient cell adhesion within 30 min on microchannels functionalized with plasma, 3-aminopropyltriethoxysilane, and type-I collagen. This approach significantly reduced the required incubation time for medium perfusion. In comparison, alternative methods such as plasma and plasma plus polyvinyl alcohol were only effective in promoting cell attachment to flat surfaces. The PT-on-a-chip holds great promise as a valuable tool for assessing the nephrotoxic potential of new drug candidates, enhancing our understanding of drug interactions with co-cultured renal cells, and reducing the need for animal experimentation, promoting the safe and ethical development of new pharmaceuticals.


Assuntos
Células Epiteliais , Túbulos Renais Proximais , Animais , Humanos , Células Endoteliais da Veia Umbilical Humana , Técnicas de Cocultura , Túbulos Renais Proximais/metabolismo , Dispositivos Lab-On-A-Chip
11.
Sci Rep ; 14(1): 8982, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637586

RESUMO

Many molecular mechanisms that lead to the host antibody response to COVID-19 vaccines remain largely unknown. In this study, we used serum antibody detection combined with whole blood RNA-based transcriptome analysis to investigate variability in vaccine response in healthy recipients of a booster (third) dose schedule of the mRNA BNT162b2 vaccine against COVID-19. The cohort was divided into two groups: (1) low-stable individuals, with antibody concentration anti-SARS-CoV IgG S1 below 0.4 percentile at 180 days after boosting vaccination; and (2) high-stable individuals, with antibody values greater than 0.6 percentile of the range in the same period (median 9525 [185-80,000] AU/mL). Differential gene expression, expressed single nucleotide variants and insertions/deletions, differential splicing events, and allelic imbalance were explored to broaden our understanding of the immune response sustenance. Our analysis revealed a differential expression of genes with immunological functions in individuals with low antibody titers, compared to those with higher antibody titers, underscoring the fundamental importance of the innate immune response for boosting immunity. Our findings also provide new insights into the determinants of the immune response variability to the SARS-CoV-2 mRNA vaccine booster, highlighting the significance of differential splicing regulatory mechanisms, mainly concerning HLA alleles, in delineating vaccine immunogenicity.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , SARS-CoV-2/genética , Vacina BNT162 , Vacinas de mRNA , COVID-19/prevenção & controle , Anticorpos , Imunidade Inata , Anticorpos Antivirais
12.
Artigo em Inglês | MEDLINE | ID: mdl-38829161

RESUMO

Introduction: COVID-19 is an infectious disease caused by SARS-CoV-2 that has become a serious threat to public health owing to its rapid spread from aerosols from infected people. Despite being considered a strictly human disease, there are reports in the literature about animals with confirmed presence of the virus. Aim: Owing to the scarcity of scientific literature on the potential for infection of animals and their importance for One Health, the objective of this work was to research SARS-CoV-2 RNA in felines (Felis silvestris catus) and dogs (Canis lupus familiaris) domiciled. Materials and Methods: Oropharyngeal swabs were collected from domestic dogs and cats belonging to patients diagnosed with COVID-19 from August to October 2021 and residents of the northwest and west regions of Paraná, Brazil. Results: Of the 34 samples collected, 14 were from dogs and 20 from cats. Three of these samples tested positive in real-time PCR, and two of them were also positive in the immunochromatographic test. After testing positive in real-time PCR, the samples underwent genetic sequencing using the Illumina COVIDSeq test. Of the 34 samples collected, three (9%), all of them female and from the feline species, tested positive in real-time PCR, with two of these (67%) also testing positive in the immunochromatographic test. Regarding sequencing, it was possible to sequence the three samples aligned with the AY.101 lineage, corresponding to the Delta variant. Conclusion: The occurrence of SARS-CoV-2 infection in dogs and cats is seen as an unintended event with significant implications for public health, including its potential transmission to other animal species. Further research is required to enhance our understanding of how this disease spreads among these animals and its broader impact on One Health initiatives.

13.
BMC Genom Data ; 24(1): 36, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391719

RESUMO

OBJECTIVES: Inborn error of immunity (IEI) comprises a broad group of inherited immunological disorders that usually display an overlap in many clinical manifestations challenging their diagnosis. The identification of disease-causing variants from whole-exome sequencing (WES) data comprises the gold-standard approach to ascertain IEI diagnosis. The efforts to increase the availability of clinically relevant genomic data for these disorders constitute an important improvement in the study of rare genetic disorders. This work aims to make available WES data of Brazilian patients' suspicion of IEI without a genetic diagnosis. We foresee a broad use of this dataset by the scientific community in order to provide a more accurate diagnosis of IEI disorders. DATA DESCRIPTION: Twenty singleton unrelated patients treated at four different hospitals in the state of Rio de Janeiro, Brazil were enrolled in our study. Half of the patients were male with mean ages of 9 ± 3, while females were 12 ± 10 years old. The WES was performed in the Illumina NextSeq platform with at least 90% of sequenced bases with a minimum of 30 reads depth. Each sample had an average of 20,274 variants, comprising 116 classified as rare pathogenic or likely pathogenic according to American College of Medical Genetics and Genomics and the Association (ACMG) guidelines. The genotype-phenotype association was impaired by the lack of detailed clinical and laboratory information, besides the unavailability of molecular and functional studies which, comprise the limitations of this study. Overall, the access to clinical exome sequencing data is limited, challenging exploratory analyses and the understanding of genetic mechanisms underlying disorders. Therefore, by making these data available, we aim to increase the number of WES data from Brazilian samples despite contributing to the study of monogenic IEI-disorders.


Assuntos
Afeto , Genômica , Masculino , Feminino , Humanos , Brasil/epidemiologia , Sequenciamento do Exoma , Hospitais , Doenças Raras
14.
BMC Genom Data ; 24(1): 47, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592284

RESUMO

BACKGROUND: Inherited genetic defects in immune system-related genes can result in Inborn Errors of Immunity (IEI), also known as Primary Immunodeficiencies (PID). Diagnosis of IEI disorders is challenging due to overlapping clinical manifestations. Accurate identification of disease-causing germline variants is crucial for appropriate treatment, prognosis, and genetic counseling. However, genetic sequencing is challenging in low-income countries like Brazil. This study aimed to perform genetic screening on patients treated within Brazil's public Unified Health System to identify candidate genetic variants associated with the patient's phenotype. METHODS: Thirteen singleton unrelated patients from three hospitals in Rio de Janeiro were enrolled in this study. Genomic DNA was extracted from the peripheral blood lymphocytes of each patient, and whole exome sequencing (WES) analyses were conducted using Illumina NextSeq. Germline genetic variants in IEI-related genes were prioritized using a computational framework considering their molecular consequence in coding regions; minor allele frequency ≤ 0.01; pathogenicity classification based on American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines gathered from the VarSome clinical database; and IEI-related phenotype using the Franklin tool. The genes classification into IEI categories follows internationally recognized guidelines informed by the International Union of Immunological Societies Expert Committee. Additional methods for confirmation of the variant included Sanger sequencing, phasing analysis, and splice site prediction. RESULTS: A total of 16 disease-causing variants in nine genes, encompassing six different IEI categories, were identified. X-Linked Agammaglobulinemia, caused by BTK variations, emerged as the most prevalent IEI disorder in the cohort. However, pathogenic and likely pathogenic variants were also reported in other known IEI-related genes, namely CD40LG, CARD11, WAS, CYBB, C6, and LRBA. Interestingly, two patients with suspected IEI exhibited pathogenic variants in non-IEI-related genes, ABCA12 and SLC25A13, potentially explaining their phenotypes. CONCLUSIONS: Genetic screening through WES enabled the detection of potentially harmful variants associated with IEI disorders. These findings contribute to a better understanding of patients' clinical manifestations by elucidating the genetic basis underlying their phenotypes.


Assuntos
Aconselhamento Genético , Testes Genéticos , Brasil/epidemiologia , Fenótipo , Frequência do Gene
15.
PLoS Negl Trop Dis ; 17(1): e0011037, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36608155

RESUMO

BACKGROUND: Chikungunya-fever (CHIKF) remains a public health major issue. It is clinically divided into three phases: acute, post-acute and chronic. Chronic cases correspond to 25-40% individuals and, though most of them are characterized by long-lasting arthralgia alone, many of them exhibit persistent or recurrent inflammatory signs that define post-Chikungunya chronic inflammatory joint disease (pCHIKV-CIJD). We aimed to identify early clinical markers of evolution to pCHIKV-CIJD during acute and post-acute phases. METHODOLOGY/PRINCIPAL FINDINGS: We studied a prospective cohort of CHIKF-confirmed volunteers with longitudinal clinical data collection from symptoms onset up to 90 days, including a 21-day visit (D21). Of 169 patients with CHIKF, 86 (50.9%) completed the follow-up, from whom 39 met clinical criteria for pCHIKV-CIJD (45.3%). The relative risk of chronification was higher in women compared to men (RR = 1.52; 95% CI = 1.15-1.99; FDR = 0.03). None of the symptoms or signs presented at D0 behaved as an early predictor of pCHIKV-CIJD, while being symptomatic at D21 was a risk factor for chronification (RR = 1.31; 95% CI = 1.09-1.55; FDR = 0.03). Significance was also observed for joint pain (RR = 1.35; 95% CI = 1.12-1.61; FDR = 0.02), reported edema (RR = 3.61; 95% CI = 1.44-9.06; FDR = 0.03), reported hand and/or feet small joints edema (RR = 4.22; 95% CI = 1.51-11.78; FDR = 0.02), and peri-articular edema observed during physical examination (RR = 2.89; 95% CI = 1.58-5.28; FDR = 0.002). Furthermore, patients with no findings in physical examination at D21 were at lower risk of chronic evolution (RR = 0.41, 95% CI = 0.24-0.70, FDR = 0.01). Twenty-nine pCHIKV-CIJD patients had abnormal articular ultrasonography (90.6% of the examined). The most common findings were synovitis (65.5%) and joint effusion (58.6%). CONCLUSION: This cohort has provided important insights into the prognostic evaluation of CHIKF. Symptomatic sub-acute disease is a relevant predictor of evolution to chronic arthritis with synovitis, drawing attention to joint pain, edema, multiple articular involvement including small hand and feet joints as risk factors for chronification beyond three months, especially in women. Future studies are needed to accomplish the identification of accurate and early biomarkers of poor clinical prognosis, which would allow better understanding of the disease's evolution and improve patients' management, modifying CHIKF burden on global public health.


Assuntos
Artrite , Febre de Chikungunya , Sinovite , Masculino , Humanos , Feminino , Febre de Chikungunya/complicações , Febre de Chikungunya/diagnóstico , Febre de Chikungunya/epidemiologia , Estudos Prospectivos , Brasil/epidemiologia , Artralgia/epidemiologia , Artralgia/etiologia , Biomarcadores , Doença Crônica
16.
Viruses ; 15(4)2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37112869

RESUMO

Brazil currently ranks second in absolute deaths by COVID-19, even though most of its population has completed the vaccination protocol. With the introduction of Omicron in late 2021, the number of COVID-19 cases soared once again in the country. We investigated in this work how lineages BA.1 and BA.2 entered and spread in the country by sequencing 2173 new SARS-CoV-2 genomes collected between October 2021 and April 2022 and analyzing them in addition to more than 18,000 publicly available sequences with phylodynamic methods. We registered that Omicron was present in Brazil as early as 16 November 2021 and by January 2022 was already more than 99% of samples. More importantly, we detected that Omicron has been mostly imported through the state of São Paulo, which in turn dispersed the lineages to other states and regions of Brazil. This knowledge can be used to implement more efficient non-pharmaceutical interventions against the introduction of new SARS-CoV variants focused on surveillance of airports and ground transportation.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Brasil/epidemiologia , Meios de Transporte , Vacinação
17.
Anticancer Agents Med Chem ; 22(17): 2927-2932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35440317

RESUMO

Gastric cancer (GC) is the fifth most common type of tumor and the third leading cause of cancer death worldwide. The evolution of gastric carcinogenesis is still poorly understood and, for this reason, preclinical research protocols were established that included the development of gastric cancer cell lines and the establishment of models of gastric carcinogenesis in non-human primates such as Sapajus apella. A comprehensive literature search was performed in relevant databases such as PubMed, ResearchGate, and Google Scholar to identify studies related to the topic. After an in-depth study of these reports, significant data were collected and compiled under appropriate headings. The main result of the studies carried out by the group on GC is the demonstration of the MYC gene overexpression as a common phenomenon in stomach carcinogenesis. Furthermore, we revealed that reducing the expression of the CDC25B gene, regulated by the MYC protein, is a therapeutic strategy against stomach tumors. This review article reveals preclinical evidence that treatment with menadione in experimental models of gastric tumorigenesis, in vivo and in vitro, inhibits the action of the phosphatase CDC25B and, consequently, prevents cell proliferation, invasion, and migration.


Assuntos
Neoplasias Gástricas , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Genes myc , Neoplasias Gástricas/metabolismo , Vitamina K 3/farmacologia , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo
18.
Front Public Health ; 10: 849978, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273945

RESUMO

In this study, we report the first case of intra-host SARS-CoV-2 recombination during a coinfection by the variants of concern (VOC) AY.33 (Delta) and P.1 (Gamma) supported by sequencing reads harboring a mosaic of lineage-defining mutations. By using next-generation sequencing reads intersecting regions that simultaneously overlap lineage-defining mutations from Gamma and Delta, we were able to identify a total of six recombinant regions across the SARS-CoV-2 genome within a sample. Four of them mapped in the spike gene and two in the nucleocapsid gene. We detected mosaic reads harboring a combination of lineage-defining mutations from each VOC. To our knowledge, this is the first report of intra-host RNA-RNA recombination between two lineages of SARS-CoV-2, which can represent a threat to public health management during the COVID-19 pandemic due to the possibility of the emergence of viruses with recombinant phenotypes.


Assuntos
COVID-19 , Coinfecção , Humanos , Pandemias , Filogenia , SARS-CoV-2/genética
19.
Microb Genom ; 8(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36106981

RESUMO

During the first semester of 2021, all of Brazil has suffered an intense wave of COVID-19 associated with the Gamma variant. In July, the first cases of Delta variant were detected in the state of Rio de Janeiro. In this work, we have employed phylodynamic methods to analyse more than 1 600 genomic sequences of Delta variant collected until September in Rio de Janeiro to reconstruct how this variant has surpassed Gamma and dispersed throughout the state. After the introduction of Delta, it has initially spread mostly in the homonymous city of Rio de Janeiro, the most populous of the state. In a second stage, dispersal occurred to mid- and long-range cities, which acted as new close-range hubs for spread. We observed that the substitution of Gamma by Delta was possibly caused by its higher viral load, a proxy for transmissibility. This variant turnover prompted a new surge in cases, but with lower lethality than was observed during the peak caused by Gamma. We reason that high vaccination rates in the state of Rio de Janeiro were possibly what prevented a higher number of deaths.


Assuntos
COVID-19 , SARS-CoV-2 , Brasil/epidemiologia , COVID-19/epidemiologia , Humanos , SARS-CoV-2/genética
20.
Sci Data ; 9(1): 366, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752638

RESUMO

The One Health concept is a global strategy to study the relationship between human and animal health and the transfer of pathogenic and non-pathogenic species between these systems. However, to the best of our knowledge, no data based on One Health genome-centric metagenomics are available in public repositories. Here, we present a dataset based on a pilot-study of 2,915 metagenome-assembled genomes (MAGs) of 107 samples from the human (N = 34), cattle (N = 28), swine (N = 15) and poultry (N = 30) gut microbiomes. Samples were collected from the five Brazilian geographical regions. Of the draft genomes, 1,273 were high-quality drafts (≥90% of completeness and ≤5% of contamination), and 1,642 were medium-quality drafts (≥50% of completeness and ≤10% of contamination). Taxonomic predictions were based on the alignment and concatenation of single-marker genes, and the most representative phyla were Bacteroidota, Firmicutes, and Proteobacteria. Many of these species represent potential pathogens that have already been described or potential new families, genera, and species with potential biotechnological applications. Analyses of this dataset will highlight discoveries about the ecology and functional role of pathogens and uncultivated Archaea and Bacteria from food-producing animals and humans. Furthermore, it also represents an opportunity to describe new species from underrepresented taxonomic groups.


Assuntos
Microbioma Gastrointestinal , Metagenoma , Animais , Archaea/genética , Bactérias/genética , Bovinos , Humanos , Metagenômica , Suínos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa