Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768743

RESUMO

Cancer is a major cause of death, affecting human life in both developed and developing countries. Numerous antitumor agents exist but their toxicity and low efficacy limits their utility. Furthermore, the complex pathophysiological mechanisms of cancer, serious side effects and poor prognosis restrict the administration of available cancer therapies. Thus, developing novel therapeutic agents are required towards a simultaneous targeting of major dysregulated signaling mediators in cancer etiology, while possessing lower side effects. In this line, the plant kingdom is introduced as a rich source of active phytochemicals. The secondary metabolites produced by plants could potentially regulate several dysregulated pathways in cancer. Among the secondary metabolites, flavonoids are hopeful phytochemicals with established biological activities and minimal side effects. Flavonoids inhibit B-cell lymphoma 2 (Bcl-2) via the p53 signaling pathway, which is a significant apoptotic target in many cancer types, hence suppressing a major dysregulated pathway in cancer. To date, there have been no studies reported which extensively highlight the role of flavonoids and especially the different classes of flavonoids in the modulation of Bcl-2 in the P53 signaling pathway. Herein, we discuss the modulation of Bcl-2 in the p53 signaling pathway by different classes of flavonoids and highlight different mechanisms through which this modulation can occur. This study will provide a rationale for the use of flavonoids against different cancers paving a new mechanistic-based approach to cancer therapy.


Assuntos
Flavonoides/farmacologia , Neoplasias/terapia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Flavonoides/metabolismo , Humanos , Compostos Fitoquímicos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo
2.
Mol Biotechnol ; 63(7): 557-568, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33893996

RESUMO

Sugarcane (Saccharum officinarum), a sugar crop commonly grown for sugar production all over the world, is susceptible to several insect pests attack in addition to bacterial, fungal and viral infections leading to substantial reductions in its yield. The complex genetic makeup and lack of resistant genes in genome of sugarcane have made the conventional breeding a difficult and challenging task for breeders. Using pesticides for control of the attacking insects can harm beneficial insects, human and other animals and the environment as well. As alternative and effective strategy for control of insect pests, genetic engineering has been applied for overexpression of cry proteins, vegetative insecticidal proteins (vip), lectins and proteinase inhibitors (PI). In addition, the latest biotechnological tools such as host-induced gene silencing (HIGS) and CRISPR/Cas9 can be employed for sustainable control of insect pests in sugarcane. In this review overexpression of the cry, vip, lectins and PI genes in transgenic sugarcane and their disease resistance potential is described.


Assuntos
Resistência à Doença , Engenharia Genética/métodos , Inseticidas/metabolismo , Saccharum/crescimento & desenvolvimento , Sistemas CRISPR-Cas , Lectinas/genética , Lectinas/metabolismo , Melhoramento Vegetal , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/parasitologia , Saccharum/genética , Saccharum/parasitologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa