Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 15129, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704665

RESUMO

Drifting aggregations of Sargassum algae provide critical habitat for endemic, endangered, and commercially important species. They may also provide favorable microclimates for associated fauna. To quantify thermal characteristics of holopelagic Sargassum aggregations, we evaluated thermal profiles of 50 aggregations in situ in the Sargasso Sea. Sea surface temperature (SST) in the center of aggregations was significantly higher than in nearby open water, and SST differential was independent of aggregation volume, area, and thickness. SST differential between aggregation edge and open water was smaller than those between aggregation center and aggregation edge and between aggregation center and open water. Water temperature was significantly higher inside and below aggregations compared to open water but did not vary inside aggregations with depth. Holopelagic Sargassum aggregations provide warmer microhabitats for associated fauna, which may benefit marine ectotherms, though temperature differentials were narrow (up to 0.7 °C) over the range of aggregation sizes we encountered (area 0.01-15 m2). We propose a hypothetical curve describing variation in SST differential with Sargassum aggregation size as a prediction for future studies to evaluate across temporal and geographic ranges. Our study provides a foundation for investigating the importance of thermal microhabitats in holopelagic Sargassum ecosystems.


Assuntos
Ecossistema , Sargassum , Microclima , Temperatura , Água
2.
Ecology ; 101(12): e03180, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32882749

RESUMO

What happens in meadows after populations of natural grazers rebound following centuries of low abundance? Many seagrass ecosystems are now experiencing this phenomenon with the recovery of green turtles (Chelonia mydas), large-bodied marine herbivores that feed on seagrasses. These seagrass ecosystems provide a rare opportunity to study ecosystem-wide shifts that result from a recovery of herbivores. We evaluate changes in regulation of seagrass productivity in a naturally grazed tropical ecosystem by (1) comparing Thalassia testudinum productivity in grazed and ungrazed areas and (2) evaluating potential regulating mechanisms of T. testudinum productivity. We established 129 green turtle exclusion cages in grazed and ungrazed areas to quantify T. testudinum growth (linear, area, mass, productivity : biomass [P:B]). In each exclosure, we recorded temperature, irradiance, water depth, nitrogen : phosphorus ratio (N:P) of blade tissue, grazing intensity before cage placement, and T. testudinum structural and nutrient characteristics. Thalassia testudinum exhibited compensatory growth in grazed areas via stimulated blade linear growth, blade area growth, and P:B across seasonal high and low growth periods and in shallow (3-4 m) and deep (9-10 m) seagrass meadows. Irradiance, depth, and N:P ratios had significant roles in regulating mass growth and P:B of T. testudinum in ungrazed areas. Depth was a significant regulating factor of mass growth and P:B in grazed areas; rates were higher and more variable in shallow meadows than in deep meadows. Grazing intensity was also a significant regulating factor for P:B, stimulating tissue turnover with increasing grazing pressure. This study provides important insights into how recovery of a large marine herbivore can result in dramatic, sustainable changes in the regulation of seagrass productivity. We also highlight the need for a historical perspective and use of appropriate indicators, including P:B and grazing intensity, when evaluating seagrass response to green turtle grazing as meadows are returned to a natural grazed state. In an age of green turtle recovery and global seagrass decline due to anthropogenic threats, a thorough understanding of green turtle-seagrass interactions at the ecosystem level is critical to ensure the restoration of seagrass ecosystems and continued recovery of green turtle populations.


Assuntos
Ecossistema , Hydrocharitaceae , Animais , Biomassa , Região do Caribe , Herbivoria
3.
Sci Rep ; 7(1): 13545, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29051581

RESUMO

Seagrass meadows are important sites for carbon storage. Green turtles (Chelonia mydas) are marine megaherbivores that consume seagrass throughout much of their global range. With successful conservation efforts, turtle abundance will increase, leading to more meadows being returned to their natural grazed state. There is concern this may lead to a loss of carbon stored in these systems, but the effects of green turtle grazing on seagrass ecosystem carbon dynamics have not been investigated. Here we experimentally show that despite 79% lower net ecosystem production (NEP) following grazing (24.7 vs. 119.5 mmol C m-2 d-1) in a Caribbean Thalassia testudinum seagrass meadow, grazed areas maintained net positive metabolic carbon uptake. Additionally, grazing did not change the meadow production to respiration ratio, indicating it did not stimulate remineralization of sediment carbon stores. Compared to other published estimates of seagrass NEP (median: 20.6 mmol C m-2 d-1), NEP in grazed Caribbean T. testudinum meadows is similar to that in many other ungrazed systems. Our results demonstrate that while grazing does decrease potential future carbon sequestration as a result of lower NEP, it does not promote a metabolic release of current carbon stocks.


Assuntos
Carbono/metabolismo , Hydrocharitaceae/metabolismo , Tartarugas/crescimento & desenvolvimento , Animais , Biomassa , Sequestro de Carbono , Pradaria
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa