Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(3)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38050146

RESUMO

Acetylcholine (ACh) promotes neocortical output to the thalamus and brainstem by preferentially enhancing the postsynaptic excitability of layer 5 pyramidal tract (PT) neurons relative to neighboring intratelencephalic (IT) neurons. Less is known about how ACh regulates the excitatory synaptic drive of IT and PT neurons. To address this question, spontaneous excitatory postsynaptic potentials (sEPSPs) were recorded in dual recordings of IT and PT neurons in slices of prelimbic cortex from adult female and male mice. ACh (20 µM) enhanced sEPSP amplitudes, frequencies, rise-times, and half-widths preferentially in PT neurons. These effects were blocked by the muscarinic receptor antagonist atropine (1 µM). When challenged with pirenzepine (1 µM), an antagonist selective for M1-type muscarinic receptors, ACh instead reduced sEPSP frequencies, suggesting that ACh may generally suppress synaptic transmission in the cortex via non-M1 receptors. Cholinergic enhancement of sEPSPs in PT neurons was not sensitive to antagonism of GABA receptors with gabazine (10 µM) and CGP52432 (2.5 µM) but was blocked by tetrodotoxin (1 µM), suggesting that ACh enhances action-potential-dependent excitatory synaptic transmission in PT neurons. ACh also preferentially promoted the occurrence of synchronous sEPSPs in dual recordings of PT neurons relative to IT-PT and IT-IT parings. Finally, selective chemogenetic silencing of hM4Di-expressing PT, but not commissural IT, neurons blocked cholinergic enhancement of sEPSP amplitudes and frequencies in PT neurons. These data suggest that, in addition to selectively enhancing the postsynaptic excitability of PT neurons, M1 receptor activation promotes corticofugal output by amplifying recurrent excitation within networks of PT neurons.


Assuntos
Colinérgicos , Neurônios , Camundongos , Masculino , Feminino , Animais , Colinérgicos/farmacologia , Neurônios/fisiologia , Células Piramidais/fisiologia , Transmissão Sináptica/fisiologia , Acetilcolina/farmacologia , Córtex Pré-Frontal/fisiologia , Receptor Muscarínico M1
2.
Neurobiol Learn Mem ; 191: 107609, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35276336

RESUMO

The postrhinal cortex (POR), the rodent homologue of the primate parahippocampal cortex (PHC), has been implicated in contextual and spatial processing. For instance, prior studies have demonstrated that permanent lesions of POR impair contextual fear conditioning. In contrast, permanent lesions of POR, specifically prior to training, do not impact auditory fear conditioning. In the current experiments, we examined the role of POR in the expression of auditory fear conditioning by using chemogenetics to silence neural activity in POR at the time of retrieval testing. Considering that extinction is context-dependent, and POR contributes to contextual memory, we hypothesized that POR would be necessary for expression of auditory fear conditioning following extinction. We found that POR inactivation during retrieval impaired freezing to an auditory cue that was tested in the conditioning context (A) after it had been extinguished in a different context (B). However, the involvement of POR was not specific to extinction. POR inactivation also impaired freezing to an auditory fear cue that had not undergone extinction. Thus, while prior studies have identified a role for POR in contextual fear conditioning, the current findings extend the functional role of POR to include the expression of auditory fear conditioning.


Assuntos
Córtex Cerebral , Medo , Animais , Córtex Cerebral/fisiologia , Extinção Psicológica , Medo/fisiologia , Ratos , Ratos Long-Evans
3.
PLoS Comput Biol ; 17(5): e1008510, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34043638

RESUMO

During normal neuronal activity, ionic concentration gradients across a neuron's membrane are often assumed to be stable. Prolonged spiking activity, however, can reduce transmembrane gradients and affect voltage dynamics. Based on mathematical modeling, we investigated the impact of neuronal activity on ionic concentrations and, consequently, the dynamics of action potential generation. We find that intense spiking activity on the order of a second suffices to induce changes in ionic reversal potentials and to consistently induce a switch from a regular to an intermittent firing mode. This transition is caused by a qualitative alteration in the system's voltage dynamics, mathematically corresponding to a co-dimension-two bifurcation from a saddle-node on invariant cycle (SNIC) to a homoclinic orbit bifurcation (HOM). Our electrophysiological recordings in mouse cortical pyramidal neurons confirm the changes in action potential dynamics predicted by the models: (i) activity-dependent increases in intracellular sodium concentration directly reduce action potential amplitudes, an effect typically attributed solely to sodium channel inactivation; (ii) extracellular potassium accumulation switches action potential generation from tonic firing to intermittently interrupted output. Thus, individual neurons may respond very differently to the same input stimuli, depending on their recent patterns of activity and/or the current brain-state.


Assuntos
Modelos Neurológicos , Potássio/metabolismo , Células Piramidais/fisiologia , Potenciais de Ação/fisiologia , Animais , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Biologia Computacional , Simulação por Computador , Líquido Extracelular/metabolismo , Líquido Intracelular/metabolismo , Camundongos , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Análise de Sistemas
4.
Neurobiol Learn Mem ; 185: 107517, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34500052

RESUMO

Prior studies with permanent lesion methods have demonstrated a role for the retrosplenial cortex (RSC) in the retrieval of remotely, but not recently, acquired delay fear conditioning. To extend the generalizability of these prior findings, the present experiments used chemogenetics to temporarily inactivate the RSC during either retrieval or encoding of delay auditory fear conditioning. Inactivation of the RSC at the time of test impaired retrieval of a remotely conditioned auditory cue, but not a recently conditioned one. In addition, inactivation of the RSC during encoding had no impact on freezing during later retrieval testing for both a remotely and recently conditioned auditory cue. These findings indicate that the RSC contributes to the retrieval, but not encoding, of remotely acquired auditory fear conditioning, and suggest it has less of a role in both retrieval and encoding of recently acquired auditory fear conditioning.


Assuntos
Condicionamento Clássico/fisiologia , Medo/fisiologia , Giro do Cíngulo/fisiologia , Consolidação da Memória/fisiologia , Rememoração Mental/fisiologia , Estimulação Acústica , Animais , Medo/psicologia , Giro do Cíngulo/anatomia & histologia , Masculino , Ratos , Ratos Long-Evans
5.
J Physiol ; 596(9): 1659-1679, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29330867

RESUMO

KEY POINTS: Phasic activation of M1 muscarinic receptors generates transient inhibition followed by longer lasting excitation in neocortical pyramidal neurons. Corticopontine neurons in the mouse prefrontal cortex exhibit weaker cholinergic inhibition, but more robust and longer lasting excitation, than neighbouring callosal projection neurons. Optogenetic release of endogenous ACh in response to single flashes of light (5 ms) preferentially enhances the excitability of corticopontine neurons for many tens of seconds. Cholinergic excitation of corticopontine neurons involves at least three ionic mechanisms: suppression of KV 7 currents, activation of the calcium-dependent non-specific cation conductance underlying afterdepolarizations, and activation of what appears to be a calcium-sensitive but calcium-permeable non-specific cation conductance. Preferential cholinergic excitation of prefrontal corticopontine neurons may facilitate top-down attentional processes and behaviours. ABSTRACT: Pyramidal neurons in layer 5 of the neocortex comprise two broad classes of projection neurons: corticofugal neurons, including corticopontine (CPn) neurons, and intratelencephalic neurons, including commissural/callosal (COM) neurons. These non-overlapping neuron subpopulations represent discrete cortical output channels contributing to perception, decision making and behaviour. CPn and COM neurons have distinct morphological and physiological characteristics, and divergent responses to modulatory transmitters such as serotonin and acetylcholine (ACh). To better understand how ACh regulates cortical output, in slices of mouse prefrontal cortex (PFC) we compared the responsivity of CPn and COM neurons to transient exposure to exogenous or endogenous ACh. In both neuron subtypes, exogenous ACh generated qualitatively similar biphasic responses in which brief hyperpolarization was followed by longer lasting enhancement of excitability. However, cholinergic inhibition was more pronounced in COM neurons, while excitatory responses were larger and longer lasting in CPn neurons. Similarly, optically triggered release of endogenous ACh from cholinergic terminals preferentially and persistently (for ∼40 s) enhanced the excitability of CPn neurons, but had little impact on COM neurons. Cholinergic excitation of CPn neurons involved at least three distinct ionic mechanisms: suppression of KV 7 channels (the 'M-current'), activation of the calcium-dependent non-specific cation conductance underlying afterdepolarizations, and activation of what appears to be a calcium-sensitive but calcium-permeable non-specific cation conductance. Our findings demonstrate projection-specific selectivity in cholinergic signalling in the PFC, and suggest that transient release of ACh during behaviour will preferentially promote corticofugal output.


Assuntos
Acetilcolina/farmacologia , Neurônios/fisiologia , Ponte/fisiologia , Córtex Pré-Frontal/fisiologia , Córtex Visual/fisiologia , Potenciais de Ação , Animais , Cálcio/metabolismo , Colinérgicos/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/efeitos dos fármacos , Optogenética , Ponte/citologia , Ponte/efeitos dos fármacos , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Visual/citologia , Córtex Visual/efeitos dos fármacos
6.
J Physiol ; 595(5): 1711-1723, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27861914

RESUMO

KEY POINTS: Phasic release of acetylcholine (ACh) in the neocortex facilitates attentional processes. Acting at a single metabotropic receptor subtype, ACh exerts two opposing actions in cortical pyramidal neurons: transient inhibition and longer-lasting excitation. Cholinergic inhibitory responses depend on calcium release from intracellular calcium stores, and run down rapidly at resting membrane potentials when calcium stores become depleted. We demonstrate that cholinergic excitation promotes calcium entry at subthreshold membrane potentials to rapidly refill calcium stores, thereby maintaining the fidelity of inhibitory cholinergic signalling. We propose a 'unifying hypothesis' for M1 receptor signalling whereby inhibitory and excitatory responses to ACh in pyramidal neurons represent complementary mechanisms governing rapid calcium cycling between the endoplasmic reticulum, the cytosol and the extracellular space. ABSTRACT: Gq -coupled M1-type muscarinic acetylcholine (ACh) receptors (mAChRs) mediate two distinct electrophysiological responses in cortical pyramidal neurons: transient inhibition driven by calcium-dependent small conductance potassium ('SK') channels, and longer-lasting and voltage-dependent excitation involving non-specific cation channels. Here we examine the interaction of these two cholinergic responses with respect to their contributions to intracellular calcium dynamics, testing the 'unifying hypothesis' that rundown of inhibitory SK responses at resting membrane potentials (RMPs) reflects depletion of intracellular calcium stores, while mAChR-driven excitation acts to refill those stores by promoting voltage-dependent entry of extracellular calcium. We report that fidelity of cholinergic SK responses requires the continued presence of extracellular calcium. Inhibitory responses that diminished after repetitive ACh application at RMPs were immediately rescued by pairing mAChR stimulation with subthreshold depolarization (∼10 mV from RMPs) initiated with variable delay (up to 500 ms) after ACh application, but not by subthreshold depolarization preceding mAChR stimulation. Further, rescued SK responses were time-locked to ACh application, rather than to the timing of subsequent depolarizing steps, suggesting that cholinergic signal transduction itself is not voltage-sensitive, but that depolarization facilitates rapid cycling of extracellular calcium through the endoplasmic reticulum to activate SK channels. Consistent with this prediction, rescue of SK responses by subthreshold depolarization required the presence of extracellular calcium. Our results demonstrate that, in addition to gating calcium release from intracellular stores, mAChR activation facilitates voltage-dependent refilling of calcium stores, thereby maintaining the ongoing fidelity of SK-mediated inhibition in response to phasic release of ACh.


Assuntos
Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Receptor Muscarínico M1/fisiologia , Acetilcolina/fisiologia , Animais , Cálcio/fisiologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais
7.
J Neurosci ; 35(3): 943-59, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25609613

RESUMO

Developing neurons must regulate morphology, intrinsic excitability, and synaptogenesis to form neural circuits. When these processes go awry, disorders, including autism spectrum disorder (ASD) or epilepsy, may result. The phosphatase Pten is mutated in some patients having ASD and seizures, suggesting that its mutation disrupts neurological function in part through increasing neuronal activity. Supporting this idea, neuronal knock-out of Pten in mice can cause macrocephaly, behavioral changes similar to ASD, and seizures. However, the mechanisms through which excitability is enhanced following Pten depletion are unclear. Previous studies have separately shown that Pten-depleted neurons can drive seizures, receive elevated excitatory synaptic input, and have abnormal dendrites. We therefore tested the hypothesis that developing Pten-depleted neurons are hyperactive due to increased excitatory synaptogenesis using electrophysiology, calcium imaging, morphological analyses, and modeling. This was accomplished by coinjecting retroviruses to either "birthdate" or birthdate and knock-out Pten in granule neurons of the murine neonatal dentate gyrus. We found that Pten knock-out neurons, despite a rapid onset of hypertrophy, were more active in vivo. Pten knock-out neurons fired at more hyperpolarized membrane potentials, displayed greater peak spike rates, and were more sensitive to depolarizing synaptic input. The increased sensitivity of Pten knock-out neurons was due, in part, to a higher density of synapses located more proximal to the soma. We determined that increased synaptic drive was sufficient to drive hypertrophic Pten knock-out neurons beyond their altered action potential threshold. Thus, our work contributes a developmental mechanism for the increased activity of Pten-depleted neurons.


Assuntos
Potenciais de Ação/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurônios/fisiologia , PTEN Fosfo-Hidrolase/genética , Convulsões/fisiopatologia , Animais , Giro Denteado/metabolismo , Giro Denteado/fisiopatologia , Camundongos Knockout , Neurônios/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Convulsões/genética , Convulsões/metabolismo , Sinapses/fisiologia
8.
J Neurosci ; 33(32): 13025-41, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23926257

RESUMO

The sodium-potassium ATPase (i.e., the "sodium pump") plays a central role in maintaining ionic homeostasis in all cells. Although the sodium pump is intrinsically electrogenic and responsive to dynamic changes in intracellular sodium concentration, its role in regulating neuronal excitability remains unclear. Here we describe a physiological role for the sodium pump in regulating the excitability of mouse neocortical layer 5 and hippocampal CA1 pyramidal neurons. Trains of action potentials produced long-lasting (∼20 s) afterhyperpolarizations (AHPs) that were insensitive to blockade of voltage-gated calcium channels or chelation of intracellular calcium, but were blocked by tetrodotoxin, ouabain, or the removal of extracellular potassium. Correspondingly, the AHP time course was similar to the decay of activity-induced increases in intracellular sodium, whereas intracellular calcium decayed at much faster rates. To determine whether physiological patterns of activity engage the sodium pump, we replayed in vitro a place-specific burst of 15 action potentials recorded originally in vivo in a CA1 "place cell" as the animal traversed the associated place field. In both layer 5 and CA1 pyramidal neurons, this "place cell train" generated small, long-lasting AHPs capable of reducing neuronal excitability for many seconds. Place-cell-train-induced AHPs were blocked by ouabain or removal of extracellular potassium, but not by intracellular calcium chelation. Finally, we found calcium contributions to the AHP to be temperature dependent: prominent at room temperature, but largely absent at 35°C. Our results demonstrate a previously unappreciated role for the sodium-potassium ATPase in regulating the excitability of neocortical and hippocampal pyramidal neurons.


Assuntos
Potenciais de Ação/fisiologia , Células Piramidais/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Compostos de Anilina/metabolismo , Animais , Benzofuranos/metabolismo , Fenômenos Biofísicos/efeitos dos fármacos , Cloreto de Cádmio/farmacologia , Césio/farmacologia , Cloretos/farmacologia , Inibidores Enzimáticos/farmacologia , Éteres Cíclicos/metabolismo , Feminino , Fluoresceínas/metabolismo , Hipocampo/citologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ouabaína/farmacologia , Potássio/metabolismo , Córtex Pré-Frontal/citologia , Células Piramidais/efeitos dos fármacos , Sódio/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
9.
bioRxiv ; 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37163128

RESUMO

In layer 5 of the neocortex, ACh promotes cortical output to the thalamus and brainstem by preferentially enhancing the postsynaptic excitability of pyramidal tract (PT) neurons relative to neighboring intratelencephalic (IT) neurons. Less is known about how ACh regulates the excitatory synaptic drive of IT and PT neurons. To address this question, spontaneous excitatory postsynaptic potentials (sEPSPs) were recorded in pairs of IT and PT neurons in slices of prelimbic cortex from adult female and male mice. ACh (20 µM) enhanced sEPSP amplitudes, frequencies, rise-times, and half-widths preferentially in PT neurons. These effects were blocked by the muscarinic acetylcholine receptor antagonist atropine (1 µM). When challenged with pirenzepine (1 µM), an antagonist selective for M1-type muscarinic receptors, ACh instead reduced sEPSP frequencies. The cholinergic increase in sEPSP amplitudes and frequencies in PT neurons was not sensitive to blockade of GABAergic receptors with gabazine (10 µM) and CGP52432 (2.5 µM), but was blocked by tetrodotoxin (1 µM), suggesting that ACh enhances action-potential-dependent excitatory synaptic transmission in PT neurons. ACh also preferentially promoted the occurrence of synchronous sEPSPs in pairs of PT neurons relative to IT-PT and IT-IT pairs. Finally, selective chemogenetic silencing of hM4Di-expressing PT, but not IT, neurons with clozapine-N-oxide (5 µM) blocked cholinergic enhancement of sEPSP amplitudes and frequencies in PT neurons. These data suggest that, in addition to enhancing the postsynaptic excitability of PT neurons, M1 receptor activation promotes corticofugal output by preferentially amplifying recurrent excitation within networks of PT neurons.

10.
J Neurophysiol ; 105(2): 779-92, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21160001

RESUMO

Acetylcholine (ACh), acting at muscarinic ACh receptors (mAChRs), modulates the excitability and synaptic connectivity of hippocampal pyramidal neurons. CA1 pyramidal neurons respond to transient ("phasic") mAChR activation with biphasic responses in which inhibition is followed by excitation, whereas prolonged ("tonic") mAChR activation increases CA1 neuron excitability. Both phasic and tonic mAChR activation excites pyramidal neurons in the CA3 region, yet ACh suppresses glutamate release at the CA3-to-CA1 synapse (the Schaffer-collateral pathway). Using mice genetically lacking specific mAChRs (mAChR knockout mice), we identified the mAChR subtypes responsible for cholinergic modulation of hippocampal pyramidal neuron excitability and synaptic transmission. Knockout of M1 receptors significantly reduced, or eliminated, most phasic and tonic cholinergic responses in CA1 and CA3 pyramidal neurons. On the other hand, in the absence of other G(q)-linked mAChRs (M3 and M5), M1 receptors proved sufficient for all postsynaptic cholinergic effects on CA1 and CA3 pyramidal neuron excitability. M3 receptors were able to participate in tonic depolarization of CA1 neurons, but otherwise contributed little to cholinergic responses. At the Schaffer-collateral synapse, bath application of the cholinergic agonist carbachol suppressed stratum radiatum-evoked excitatory postsynaptic potentials (EPSPs) in wild-type CA1 neurons and in CA1 neurons from mice lacking M1 or M2 receptors. However, Schaffer-collateral EPSPs were not significantly suppressed by carbachol in neurons lacking M4 receptors. We therefore conclude that M1 and M4 receptors are the major mAChR subtypes responsible for direct cholinergic modulation of the excitatory hippocampal circuit.


Assuntos
Potenciais de Ação/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Rede Nervosa/fisiologia , Células Piramidais/fisiologia , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M4/metabolismo , Transmissão Sináptica/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
eNeuro ; 8(2)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33468538

RESUMO

Excitatory synaptic transmission in many neurons is mediated by two coexpressed ionotropic glutamate receptor subtypes, AMPA and NMDA receptors, that differ in kinetics, ion selectivity, and voltage-sensitivity. AMPA receptors have fast kinetics and are voltage-insensitive, while NMDA receptors have slower kinetics and increased conductance at depolarized membrane potentials. Here, we report that the voltage dependency and kinetics of NMDA receptors act synergistically to stabilize synaptic integration of EPSPs across spatial and voltage domains. Simulations of synaptic integration in simplified and morphologically realistic dendritic trees revealed that the combined presence of AMPA and NMDA conductances reduce the variability of somatic responses to spatiotemporal patterns of excitatory synaptic input presented at different initial membrane potentials and/or in different dendritic domains. This moderating effect of the NMDA conductance on synaptic integration was robust across a wide range of AMPA-to-NMDA ratios, and results from synergistic interaction of NMDA kinetics (which reduces variability across membrane potential) and voltage dependence (which favors stabilization across dendritic location). When combined with AMPA conductance, the NMDA conductance compensates for voltage-dependent and impedance-dependent changes in synaptic driving force, and distance-dependent attenuation of synaptic potentials arriving at the axon, to increase the fidelity of synaptic integration and EPSP-spike coupling across both neuron state (i.e., initial membrane potential) and dendritic location of synaptic input. Thus, synaptic NMDA receptors convey advantages for synaptic integration that are independent of, but fully compatible with, their importance for coincidence detection and synaptic plasticity.


Assuntos
Neurônios , Receptores de N-Metil-D-Aspartato , Potenciais Pós-Sinápticos Excitadores , Receptores de AMPA , Sinapses , Transmissão Sináptica
12.
J Neurosci ; 29(31): 9888-902, 2009 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-19657040

RESUMO

ACh release into the rodent prefrontal cortex is predictive of successful performance of cue detection tasks, yet the cellular mechanisms underlying cholinergic modulation of cortical function are not fully understood. Prolonged ("tonic") muscarinic ACh receptor (mAChR) activation increases the excitability of cortical pyramidal neurons, whereas transient ("phasic") mAChR activation generates inhibitory and/or excitatory responses, depending on neuron subtype. These cholinergic effects result from activation of "M1-like" mAChRs (M1, M3, and M5 receptors), but the specific receptor subtypes involved are not known. We recorded from cortical pyramidal neurons from wild-type mice and mice lacking M1, M3, and/or M5 receptors to determine the relative contribution of M1-like mAChRs to cholinergic signaling in the mouse prefrontal cortex. Wild-type neurons in layer 5 were excited by tonic mAChR stimulation, and had biphasic inhibitory followed by excitatory, responses to phasic ACh application. Pyramidal neurons in layer 2/3 were substantially less responsive to tonic and phasic cholinergic input. Cholinergic effects were largely absent in neurons from mice lacking M1 receptors, but most were robust in neurons lacking M3, M5, or both M3 and M5 receptors. The exception was tonic cholinergic suppression of the afterhyperpolarization in layer 5 neurons, which was absent in cells lacking either M1 or M3 receptors. Finally, we confirm a role for M1 receptors in behavior by demonstrating cue detection deficits in M1-lacking mice. Together, our results demonstrate that M1 receptors facilitate cue detection behaviors and are both necessary and sufficient for most direct effects of ACh on pyramidal neuron excitability.


Assuntos
Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Receptor Muscarínico M1/metabolismo , Potenciais de Ação/efeitos dos fármacos , Análise de Variância , Animais , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Condicionamento Clássico/fisiologia , Sinais (Psicologia) , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/fisiologia , Técnicas de Patch-Clamp , Córtex Pré-Frontal/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/genética , Receptor Muscarínico M3/agonistas , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Receptor Muscarínico M5/agonistas , Receptor Muscarínico M5/genética , Receptor Muscarínico M5/metabolismo
13.
14.
Front Cell Neurosci ; 13: 1, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30723396

RESUMO

The axon initial segment (AIS) is a specialized region within the proximal portion of the axon that initiates action potentials thanks in large part to an enrichment of sodium channels. The scaffolding protein ankyrinG (AnkG) is essential for the recruitment of sodium channels as well as several other intracellular and extracellular proteins to the AIS. In the present study, we explore the role of the cell adhesion molecule (CAM) neurofascin-186 (NF-186) in arranging the individual molecular components of the AIS in cultured rat hippocampal neurons. Using a CRISPR depletion strategy to ablate NF expression, we found that the loss of NF selectively perturbed AnkG accumulation and its relative proximal distribution within the AIS. We found that the overexpression of sodium channels could restore AnkG accumulation, but not its altered distribution within the AIS without NF present. We go on to show that although the loss of NF altered AnkG distribution, sodium channel function within the AIS remained normal. Taken together, these results demonstrate that the regulation of AnkG and sodium channel accumulation within the AIS can occur independently of one another, potentially mediated by other binding partners such as NF.

15.
Neuron ; 37(2): 299-309, 2003 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-12546824

RESUMO

Little is known about how GABAergic inputs interact with excitatory inputs under conditions that maintain physiological concentrations of intracellular anions. Using extracellular and gramicidin perforated-patch recording, we show that somatic and dendritic GABA responses in mature cortical pyramidal neurons are depolarizing from rest and can facilitate action potential generation when combined with proximal excitatory input. Dendritic GABA responses were excitatory regardless of timing, whereas somatic GABA responses were inhibitory when coincident with excitatory input but excitatory at earlier times. These excitatory actions of GABA occur even though the GABA reversal potential is below action potential threshold and largely uniform across the somato-dendritic axis, and arise when GABAergic inputs are temporally or spatially isolated from concurrent excitation. Our findings demonstrate that under certain circumstances GABA will have an excitatory role in synaptic integration in the cortex.


Assuntos
Córtex Cerebral/fisiologia , Aminoácidos Excitatórios/fisiologia , Ácido gama-Aminobutírico/fisiologia , Potenciais de Ação/fisiologia , Animais , Dendritos/fisiologia , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Gramicidina , Masculino , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp , Células Piramidais/fisiologia , Ratos , Ratos Wistar , Receptores de GABA-A/fisiologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-29422840

RESUMO

Serotonin (5-HT) selectively excites subpopulations of pyramidal neurons in the neocortex via activation of 5-HT2A (2A) receptors coupled to Gq subtype G-protein alpha subunits. Gq-mediated excitatory responses have been attributed primarily to suppression of potassium conductances, including those mediated by KV7 potassium channels (i.e., the M-current), or activation of non-specific cation conductances that underlie calcium-dependent afterdepolarizations (ADPs). However, 2A-dependent excitation of cortical neurons has not been extensively studied, and no consensus exists regarding the underlying ionic effector(s) involved. In layer 5 of the mouse medial prefrontal cortex, we tested potential mechanisms of serotonergic excitation in commissural/callosal (COM) projection neurons, a subpopulation of pyramidal neurons that exhibits 2A-dependent excitation in response to 5-HT. In baseline conditions, 5-HT enhanced the rate of action potential generation in COM neurons experiencing suprathreshold somatic current injection. This serotonergic excitation was occluded by activation of muscarinic acetylcholine (ACh) receptors, confirming that 5-HT acts via the same Gq-signaling cascades engaged by ACh. Like ACh, 5-HT promoted the generation of calcium-dependent ADPs following spike trains. However, calcium was not necessary for serotonergic excitation, as responses to 5-HT were enhanced (by >100%), rather than reduced, by chelation of intracellular calcium with 10 mM BAPTA. This suggests intracellular calcium negatively regulates additional ionic conductances gated by 2A receptors. Removal of extracellular calcium had no effect when intracellular calcium signaling was intact, but suppressed 5-HT response amplitudes, by about 50%, when BAPTA was included in patch pipettes. This suggests that 2A excitation involves activation of a non-specific cation conductance that is both calcium-sensitive and calcium-permeable. M-current suppression was found to be a third ionic effector, as blockade of KV7 channels with XE991 (10 µM) reduced serotonergic excitation by ∼50% in control conditions, and by ∼30% with intracellular BAPTA present. Together, these findings demonstrate a role for at least three distinct ionic effectors, including KV7 channels, a calcium-sensitive and calcium-permeable non-specific cation conductance, and the calcium-dependent ADP conductance, in mediating serotonergic excitation of COM neurons.


Assuntos
Corpo Caloso/metabolismo , Córtex Pré-Frontal/metabolismo , Células Piramidais/metabolismo , Serotonina/metabolismo , Acetilcolina/metabolismo , Animais , Cálcio/metabolismo , Corpo Caloso/citologia , Corpo Caloso/efeitos dos fármacos , Feminino , Canais de Potássio KCNQ/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos Endogâmicos C57BL , Vias Neurais/citologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Neurotransmissores/farmacologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/efeitos dos fármacos , Células Piramidais/citologia , Células Piramidais/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/metabolismo , Receptores Muscarínicos/metabolismo , Técnicas de Cultura de Tecidos
17.
Front Neural Circuits ; 12: 63, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131678

RESUMO

Neuromodulatory transmitters, such as serotonin (5-HT), selectively regulate the excitability of subpopulations of cortical projection neurons to gate cortical output to specific target regions. For instance, in the mouse prelimbic cortex, 5-HT selectively excites commissurally projecting (COM) intratelencephalic neurons via activation of 5-HT2A (2A) receptors, while simultaneously inhibiting, via 5-HT1A (1A) receptors, corticofugally projecting pyramidal neurons targeting the pons. Here we characterize the physiology, morphology, and serotonergic regulation of corticoamygdalar (CAm) projection neurons in the mouse prelimbic cortex. Layer 5 CAm neurons shared a number of physiological and morphological characteristics with COM neurons, including higher input resistances, smaller HCN-channel mediated responses, and sparser dendritic arbors than corticopontine neurons. Across cortical lamina, CAm neurons also resembled COM neurons in their serotonergic modulation; focally applied 5-HT (100 µM; 1 s) generated 2A-receptor-mediated excitation, or 1A- and 2A-dependent biphasic responses, in ipsilaterally and contralaterally projecting CAm neurons. Serotonergic excitation depended on extrinsic excitatory drive, as 5-HT failed to depolarize CAm neurons from rest, but could enhance the number of action potentials generated by simulated barrages of synaptic input. Finally, using dual tracer injections, we identified double-labeled CAm/COM neurons that displayed primarily excitatory or biphasic responses to 5-HT. Overall, our findings reveal that prelimbic CAm neurons in layer 5 overlap, at least partially, with COM neurons, and that neurons projecting to either, or both targets, exhibit 2A-dependent serotonergic excitation. These results suggest that 5-HT, acting at 2A receptors, may promote cortical output to the amygdala.


Assuntos
Tonsila do Cerebelo/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Receptor 5-HT1A de Serotonina/fisiologia , Receptor 5-HT2A de Serotonina/fisiologia , Serotonina/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
J Neurosci ; 25(44): 10308-20, 2005 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-16267239

RESUMO

Acetylcholine (ACh) is a central neurotransmitter critical for normal cognitive function. Here we show that transient muscarinic acetylcholine receptor activation directly inhibits neocortical layer 5 pyramidal neurons. Using whole-cell and cell-attached recordings from neurons in slices of rat somatosensory cortex, we demonstrate that transient activation of M1-type muscarinic receptors induces calcium release from IP3-sensitive intracellular calcium stores and subsequent activation of an apamin-sensitive, SK-type calcium-activated potassium conductance. ACh-induced hyperpolarizing responses were blocked by atropine and pirenzepine but not by methoctramine or GABA receptor antagonists (picrotoxin, SR 95531 [2-(3-carboxypropyl)-3-amino-6-(4-methoxyphenyl)pyridazinium bromide], and CGP 55845 [(2S)-3-[[(15)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphinic acid]). Responses were associated with a 31 +/- 5% increase in membrane conductance, had a reversal potential of -93 +/- 1 mV, and were eliminated after internal calcium chelation with BAPTA, blockade of IP3 receptors, or extracellular application of cadmium but not by sodium channel blockade with tetrodotoxin. Calcium-imaging experiments demonstrated that ACh-induced hyperpolarizing, but not depolarizing, responses were correlated with large increases in intracellular calcium. Surprisingly, transient increases in muscarinic receptor activation were capable of generating hyperpolarizing responses even during periods of tonic muscarinic activation sufficient to depolarize neurons to action potential threshold. Furthermore, eserine, an acetylcholinesterase inhibitor similar to those used therapeutically in the treatment of Alzheimer's disease, disproportionately enhanced the excitatory actions of acetylcholine while reducing the ability of acetylcholine to generate inhibitory responses during repeated applications of ACh. These data demonstrate that acetylcholine can directly inhibit the output of neocortical pyramidal neurons.


Assuntos
Agonistas Muscarínicos/farmacologia , Neocórtex/fisiologia , Inibição Neural/fisiologia , Células Piramidais/fisiologia , Receptores Muscarínicos/fisiologia , Animais , Neocórtex/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Wistar
19.
eNeuro ; 3(1)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27022619

RESUMO

In most vertebrate neurons, action potentials are initiated in the axon initial segment (AIS), a specialized region of the axon containing a high density of voltage-gated sodium and potassium channels. It has recently been proposed that neurons use plasticity of AIS length and/or location to regulate their intrinsic excitability. Here we quantify the impact of neuron morphology on AIS plasticity using computational models of simplified and realistic somatodendritic morphologies. In small neurons (e.g., dentate granule neurons), excitability was highest when the AIS was of intermediate length and located adjacent to the soma. Conversely, neurons having larger dendritic trees (e.g., pyramidal neurons) were most excitable when the AIS was longer and/or located away from the soma. For any given somatodendritic morphology, increasing dendritic membrane capacitance and/or conductance favored a longer and more distally located AIS. Overall, changes to AIS length, with corresponding changes in total sodium conductance, were far more effective in regulating neuron excitability than were changes in AIS location, while dendritic capacitance had a larger impact on AIS performance than did dendritic conductance. The somatodendritic influence on AIS performance reflects modest soma-to-AIS voltage attenuation combined with neuron size-dependent changes in AIS input resistance, effective membrane time constant, and isolation from somatodendritic capacitance. We conclude that the impact of AIS plasticity on neuron excitability will depend largely on somatodendritic morphology, and that, in some neurons, a shorter or more distally located AIS may promote, rather than limit, action potential generation.


Assuntos
Potenciais de Ação , Axônios/fisiologia , Plasticidade Neuronal , Neurônios/citologia , Neurônios/fisiologia , Animais , Simulação por Computador , Humanos , Potenciais da Membrana , Modelos Neurológicos
20.
J Neurosci ; 23(36): 11363-72, 2003 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-14673000

RESUMO

Somatic and dendritic whole-cell recording was used to examine action potential (AP) initiation and propagation in layer 5 pyramidal neurons of the rat prelimbic prefrontal cortex. APs generated by somatic current injection, or via antidromic stimulation, were reliably recorded at apical dendritic locations as far as 480 microm from the soma. Although the backpropagation of single APs into the apical dendrite was robust, frequency-dependent attenuation was observed during AP trains delivered at 10-100 Hz. APs were usually initiated close to the soma (presumably in the axon); however, strong depolarizing input to the apical dendrite could generate dendritic spikes that preceded somatic APs. AP backpropagation was dependent solely on activation of dendritic voltage-gated sodium channels and did not require activation of dendritic calcium channels. Despite not playing a role in AP backpropagation, calcium-imaging experiments demonstrated that dendritic calcium channels are activated by backpropagating APs, leading to transient increases in intracellular calcium. In addition, calcium imaging revealed that AP backpropagation into the distal apical tuft was frequency dependent. Finally, we tested whether dopamine, a prominent neuromodulator associated with prefrontal activity, could alter AP initiation or backpropagation. Bath-applied dopamine (10 or 100 microm) did not effect AP backpropagation, frequency-dependent depression, local dendritic spike initiation, or AP-induced calcium signaling. These data indicate that AP backpropagation in prefrontal layer 5 pyramidal neurons is robust but frequency dependent in the distal tuft, requires dendritic sodium rather than calcium channel activation, and, unlike other aspects of neuronal excitability, insensitive to modulation by dopamine.


Assuntos
Potenciais de Ação , Dopamina/farmacologia , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Animais , Cálcio/metabolismo , Canais de Cálcio/fisiologia , Células Cultivadas , Dendritos/fisiologia , Cinética , Técnicas de Patch-Clamp , Córtex Pré-Frontal/citologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Ratos , Ratos Wistar , Canais de Sódio/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa