Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 25(2): e202300748, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37963070

RESUMO

In this investigation, we set out first to characterize the thermodynamics of Mg(AlH4 )2 and secondly to use the determined data to reevaluate and update existing estimation procedures for heat capacity functions, enthalpies of formation and absolute entropies of alanates. Within this study, we report the heat capacity function of Mg(AlH4 )2 in the temperature range from 2 K to 370 K and its enthalpy of formation and absolute entropy at 298.15 K, being - 70 . 6 ± 3 . 6 ${ - 70.6 \pm 3.6}$  kJ mol-1 and 133.06 J (K mol)-1 , respectively. Using these values, we updated and expanded methods for the estimation of thermodynamic data of alanates.

2.
Chemistry ; 26(23): 5245-5256, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-31943404

RESUMO

The homogeneity range of ternary iron indium thiospinel at 873 K was investigated. A detailed study was focused on two distinct series (y=z): 1) a previously reported charge-balanced (In0.67+0.33y □0.33-0.33y )tetr [In2-z Fez ]oct S4 (A1-series; □ stands for vacancy; the abbreviations "tetr" and "oct" indicate atoms occupying tetrahedral 8a and octahedral 16d sites, respectively) and 2) a new charge-unbalanced (In0.67+y □0.33-y )tetr [In2-z Fez ]oct S4 (A2-series). Fe atoms were confirmed to exclusively occupy an octahedral position in both series. An unusual reduction of the unit cell parameter with increasing Fe content is explained by differences in the ionic radii between Fe and In, as well as by an additional electrostatic attraction originating from charge imbalance (latter only in A2-series). The studied compound is an n-type semiconductor, and its charge carrier concentration increases or decreases for larger Fe content within the A1- and A2-series, respectively. The thermal conductivity κtot is significantly reduced upon increasing vacancy concentration, whereas the change of power factor is insufficient to drastically improve the thermoelectric figure of merit.

3.
Inorg Chem ; 59(19): 14280-14289, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32946694

RESUMO

Hf2B2-2δIr5+δ crystallizes with a new type of structure: space group Pbam, a = 5.6300(3) Å, b = 11.2599(5) Å, and c = 3.8328(2) Å. Nearly 5% of the boron pairs are randomly replaced by single iridium atoms (Ir5+δB2-2δ). From an analysis of the chemical bonding, the crystal structure can be understood as a three-dimensional framework stabilized by covalent two-atom B-B and Ir-Ir as well as three-atom Ir-Ir-B and Ir-Ir-Ir interactions. The hafnium atoms center 14-atom cavities and transfer a significant amount of charge to the polyanionic boron-iridium framework. This refractory boride displays moderate hardness and is a Pauli paramagnet with metallic electrical resistivity, Seebeck coefficient, and thermal conductivity. The metallic character of this system is also confirmed by electronic structure calculations revealing 5.8 states eV-1 fu-1 at the Fermi level. Zr2B2-2δIr5+δ is found to be isotypic with Hf2B2-2δIr5+δ, and both form a continuous solid solution.

4.
Acc Chem Res ; 51(2): 214-222, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29313671

RESUMO

Materials with the crystal structure of γ-brass type (Cu5Zn8 type) are typical representatives of intermetallic compounds. From the electronic point of view, they are often interpreted using the valence electron concentration approach of Hume-Rothery, developed previously for transition metals. The γ-brass-type phases of the main-group elements are rather rare. The intermetallic compound Be21Pt5, a new member of this family, was synthesized, and its crystal structure, chemical bonding, and physical properties were characterized. Be21Pt5 crystallizes in the cubic space group F4̅3m with lattice parameter a = 15.90417(3) Å and 416 atoms per unit cell. From the crystallographic point of view, the binary substance represents a special family of intermetallic compounds called complex metallic alloys (CMA). The crystal structure was solved by a combination of synchrotron and neutron powder diffraction data. Besides the large difference in the scattering power of the components, the structure solution was hampered by the systematic presence of very weak reflections mimicking wrong symmetry. The structural motif of Be21Pt5 is described as a 2 × 2 × 2 superstructure of the γ-brass structure (Cu5Zn8 type) or 6 × 6 × 6 superstructure of the simple bcc structural pattern with distinct distribution of defects. The main building elements of the crystal structure are four types of nested polyhedral units (clusters) with the compositions Be22Pt4 and Be20Pt6. Each cluster contains four shells (4 + 4 + 6 + 12 atoms). Clusters with different compositions reveal various occupation of the shells by platinum and beryllium. Polyhedral nested units with the same composition differ by the distance of the shell atoms to the cluster center. Analysis of chemical bonding was made applying the electron localizability approach, a quantum chemical technique operating in real space that is proven to be especially efficient for intermetallic compounds. Evaluations of the calculated electron density and electron localizability indicator (ELI-D) revealed multicenter bonding, being in accordance with the low valence electron count per atom in Be21Pt5. A new type of atomic interactions in intermetallic compounds, cluster bonds involving 8 or even 14 atoms, is found in the clusters with shorter distances between the shell atoms and the cluster centers. In the remaining clusters, four- and five-center bonds characterize the atomic interactions. Multicluster interactions within the polyhedral nested units and three-center polar intercluster bonds result in a three-dimensional framework resembling the structural pattern of NaCl. Be21Pt5 is a diamagnetic metal and one of rather rare CMA compounds revealing superconductivity (Tc = 2.06 K).

5.
Inorg Chem ; 54(13): 6338-46, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26102602

RESUMO

ThPt2 crystallizes with unique type of structure (space group I4/mmm, a = 4.1565(1) Å, c = 14.3663(7) Å, Pearson symbol tI12), which belongs to the group of the close packed tetragonal structures. An analysis of the chemical bonding by the electron localizability approach reveals the formation of two-dimensional layered platinum anionic substructures interlinked by strongly polar bonds to Th. Measurements of magnetic susceptibility, electrical resistivity, and specific heat show ThPt2 to be diamagnetic with metallic type of electrical conductivity in good agreement with the calculated electronic structure (N(EF) = 0.9 states eV(-1) f.u.(-1)).

6.
ACS Nano ; 18(6): 4726-4732, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38284570

RESUMO

Ultralow dimensionality of 2D layers magnifies their sensitivity to adjacent charges enabling even postprocessing electric control of multifunctional structures. However, functionalizing 2D layers remains an important challenge for on-demand device-property exploitation. Here we report that an electrical and even fully optical way to control and write modifications to the magnetoresistive response of CVD-deposited graphene is achievable through the electrostatics of the photoferroelectric substrate. For electrical control, the ferroelectric polarization switch modifies graphene magnetoresistance by 67% due to a Fermi level shift with related modification in charge mobility. A similar function is also attained entirely by bandgap light due to the substrate photovoltaic effect. Moreover, an all-optical way to imprint and recover graphene magnetoresistance by light is reported as well as magnetic control of graphene transconductance. These findings extend photoferroelectric control in 2D structures to magnetic dimensions and advance wireless operation for sensors and field-effect transistors.

7.
ACS Appl Mater Interfaces ; 15(48): 55948-55956, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37983566

RESUMO

As global data generation continues to rise, there is an increasing demand for revolutionary in-memory computing methodologies and efficient machine learning solutions. Despite recent progress in electrical and electro-optical simulations of machine learning devices, the all-optical nonthermal function remains challenging, with single wavelength operation still elusive. Here we report on an optical and monochromatic way of neuromorphic signal processing for brain-inspired functions, eliminating the need for electrical pulses. Multilevel synaptic potentiation-depression cycles are successfully achieved optically by leveraging photovoltaic charge generation and polarization within the photoferroelectric substrate interfaced with the graphene sensor. Furthermore, the demonstrated low-power prototype device is able to reproduce exact signal profile of brain tissues yet with more than 2 orders of magnitude faster response. The reported properties should trigger all-optical and low power artificial neuromorphic development based on photoferroelectric structures.

8.
Inorg Chem ; 51(14): 7472-83, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22725845

RESUMO

The ternary boron compounds TM(7)TM'(6)B(8) (TM = Ta, Nb; TM' = Ru, Rh, Ir) were prepared by high-temperature thermal treatment of mixtures of the elements. An analysis of the chemical bonding by the electron density/electron localizability approach reveals formation of covalently bonded polyanions [B(6)] and [TM'(6)B(2)]. The cationic part of the structure contains separated TM cations. In agreement with the chemical bonding analysis and band structure calculations, all TM(7)TM'(6)B(8) compounds are metallic Pauli-paramagnets (TM' = Ru, Rh) or diamagnets (TM' = Ir).

9.
Dalton Trans ; 51(26): 10036-10046, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35723520

RESUMO

The structural and physical properties of Y5Ir6Sn18 grown from Sn-flux as large single crystals are studied. Y5Ir6Sn18 crystallizes with a unique structure [space group Fm3̄m, a = 13.7706(1) Å], which is characterized by a strong disorder. A transmission electron microscopy (TEM) study indicated that the structural model of Y5Ir6Sn18 obtained from X-ray diffraction methods is an average description of a complex intergrowth of domains with different structural arrangements. The studied stannide is a type-II superconductor with a critical temperature Tc = 2.1 K, a rather weak electron-phonon coupling and conventional s-wave BCS-like mechanisms. Performed theoretical electronic band structure calculations indicated the inconsistency of an idealized structural model earlier reported for Y5Ir6Sn18.

10.
Dalton Trans ; 51(12): 4734-4748, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35244111

RESUMO

Polymorphism is observed in the Y3+xRh4Ge13-x series. The decrease of Y-content leads to the transformation of the primitive cubic Y3.6Rh4Ge12.4 [x = 0.6, space group Pm3̄n, a = 8.96095(9) Å], revealing a strongly disordered structure of the Yb3Rh4Sn13 Remeika prototype, into a body-centred cubic structure [La3Rh4Sn13 structure type, space group I4132, a = 17.90876(6) Å] for x = 0.4 and further into a tetragonal arrangement (Lu3Ir4Ge13 structure type, space group I41/amd, a = 17.86453(4) Å, a = 17.91076(6) Å) for the stoichiometric (i.e. x = 0) Y3Rh4Ge13. Analogous symmetry lowering is found within the Y3+xIr4Ge13-x series, where the compound with Y-content x = 0.6 is crystallizing with La3Rh4Sn13 structure type [a = 17.90833(8) Å] and the stoichiometric Y3Ir4Ge13 is isostructural with the Rh-analogue [a = 17.89411(9) Å, a = 17.9353(1) Å]. The structural relationships of these derivatives of the Remeika prototype are discussed. Compounds from the Y3+xRh4Ge13-x series are found to be weakly-coupled BCS-like superconductors with Tc = 1.25, 0.43 and 0.6, for x = 0.6, 0.4 and 0, respectively. They also reveal low thermal conductivity (<1.5 W K-1 m-1 in the temperature range 1.8-350 K) and small Seebeck coefficients. The latter are common for metallic systems. Y3Rh4Ge13 undergoes a first-order phase transition at Tf = 177 K, with signatures compatible to a charge density wave scenario. The electronic structure calculations confirm the instability of the idealized Yb3Rh4Sn13-like structural arrangements for Y3Rh4Ge13 and Y3Ir4Ge13.

11.
Materials (Basel) ; 15(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35454433

RESUMO

We carried out electrical resistivity and X-ray diffraction (XRD) studies on the filled skutterudite superconductors LaPt4Ge12 and PrPt4Ge12 under hydrostatic pressure. The superconducting transition temperature Tc is linearly suppressed upon increasing pressure, though the effect of pressure on Tc is rather weak. From the analysis of the XRD data, we obtain bulk moduli of B=106 GPa and B=83 GPa for LaPt4Ge12 and PrPt4Ge12, respectively. The knowledge of the bulk modulus allows us to compare the dependence of Tc on the unit-cell volume from our pressure study directly with that found in the substitution series La1-xPrxPt4Ge12. We find that application of hydrostatic pressure can be characterized mainly as a volume effect in LaPt4Ge12 and PrPt4Ge12, while substitution of Pr for La in La1-xPrxPt4Ge12 yields features going beyond a simple picture.

12.
Dalton Trans ; 50(38): 13580-13590, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34515715

RESUMO

Yb3Co4Ge13 is the first example of a Remeika phase with a 3D + 3 [space group P4̄3n(α,0,0)000(0,α,0)000(0,0,α)000; a = 8.72328(1) Å, α = 0.4974(2)] modulated crystal structure. A slight shift of the composition towards higher Yb-content (i.e. Yb3.2Co4Ge12.8) leads to the disappearance of the satellite reflections and stabilization of the disordered primitive cubic [space group Pm3̄n, a = 8.74072(2) Å] Remeika prototype structure. The stoichiometric structurally modulated germanide is a metal with hole-like charge carriers, where Yb-ions are in a temperature-dependent intermediate valence state varying from +2.60 to +2.66 for the temperature range 85-293 K. The valence fluctuations have been investigated by means of temperature dependent X-ray absorption spectroscopy, magnetic susceptibility and thermopower measurements.

13.
Dalton Trans ; 50(12): 4202-4209, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33683265

RESUMO

A series of new ternary isostructural R4Co2C3 (R = Y, Gd, Tb) carbides was synthesized by annealing of arc-melted stoichiometric samples. The crystal structure of Tb4Co2C3 [space group P2/m, Pearson symbol mP18, a = 12.754(2) Å, b = 3.6251(4) Å, c = 7.0731(9) Å, ß = 105.601(6)°] was solved by direct methods from neutron powder diffraction data collected at 100 K. The room temperature unit cell parameters of the new phases were determined by X-ray powder diffraction technique. The crystal structure of Tb4Co2C3 is characterized as an intergrowth structure resulting from the stacking of alternating TbCoC (YCoC-type) and Tb2C (anti-CdCl2 type) fragments with a 2 : 1 ratio. Tb4Co2C3 orders ferromagnetically at TC = 35(1) K, whereas the isostructural Gd4Co2C3 reveals two magnetic transitions at TC1 = 82(3) K and TC2 = 13(2) K. Density functional theory (DFT) calculations confirm that the magnetic moments of the R4Co2C3 (R = Gd, Tb) carbides are exclusively due to the rare-earth elements. Y4Co2C3 is shown to be a Pauli-paramagnet by experimental and theoretical studies.

14.
Dalton Trans ; 49(20): 6832-6841, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32377645

RESUMO

Single crystals of Sc5Rh6Sn18 were grown from Sn-flux. The crystal structure (SG: I41/acd, a = 13.5529(2) Å, c = 27.0976(7) Å) was studied by high-resolution X-ray diffraction on powder and single crystal material as well as by TEM. All methods confirm it to crystallize with a Sc5Ir6Sn18 (space group I41/acd) type structure. The performed structural studies also suggest the presence of local domains with a broken average translational symmetry. An analysis of the chemical bonding situation reveals highly polar covalent Sc2-Sn1, Sn-Rh and Sc2-Rh bonds, two- and three-centre bonds involving Sn-atoms as well as the ionic nature of Sc1 bonding. The thermopower of Sc5Rh6Sn18 is isotropic, small and negative (i.e. dominance of electron-like charge carriers). Due to structural disorder, the thermal conductivity is lower in comparison with regular metallic systems.

15.
Dalton Trans ; 49(44): 15903-15913, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33165461

RESUMO

Poly- and single-crystalline samples of In0.67□0.33In2S4 thiospinel were obtained by various powder metallurgical and chemical vapor transport methods, respectively. All synthesized samples contained ß-In0.67□0.33In2S4 modification only, independent of the synthesis procedure. High-resolution powder X-ray diffraction (PXRD) experiments at 80 K enabled the observation of split tetragonal reflections (completely overlapped at room temperature), which prove the correctness of the crystal structure model accepted for the ß-polymorph. Combining single-crystal XRD, transmission electron microscopy and selected-area electron diffraction studies, the presence of three twin domains in the as-grown crystals was confirmed. A high temperature PXRD study revealed both abrupt (in full widths at half maxima of main reflections and in unit-cell volume) and gradual (in intensity of satellites and c/a ratio) changes in the vicinity of the α-ß phase transition. These observations, together with a clear endothermic peak in the heat capacity, the magnitude of enthalpy/entropy change and the temperature dependence of electrical resistivity (associated with hysteresis), hinted towards the 1st order type of transition. Three scenarios, based on Rietveld refinement analysis, were considered for the description of the crystal structure evolution from ß- to α-modification, including the (3+3)D-modulated cubic structure at 693 K as an intermediate state during the ß-α transformation. The Seebeck coefficient, electrical resistivity and thermal conductivity were not only influenced by phase transition, but also by annealing conditions (S-poor or S-rich atmosphere). Density functional theory calculations predicted semiconducting behavior of In0.67□0.33In2S4, as well as instability of the fictitious InIn2S4 thiospinel.

16.
J Phys Condens Matter ; 31(44): 445603, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31311892

RESUMO

Sc5Ir6Sn18 crystallizes with a split variant of the Tb5Rh6Sn18 structure type (space group I41/acd, [Formula: see text] [Formula: see text], [Formula: see text] [Formula: see text]). DFT calculations confirmed the instability of the structural arrangement with the fully occupied and unsplit crystallographic sites. High quality single crystals were grown from a Sn melt. Sc5Ir6Sn18 is a diamagnetic metal showing a superconducting transition at a critical temperature [Formula: see text] K. The relatively low critical magnetic field [Formula: see text] 3.2 T as well as the obtained values of the specific heat ratio [Formula: see text] and energy-gap ratio [Formula: see text] suggest this system to be a weakly coupled BCS-like superconductor.

17.
Dalton Trans ; 48(23): 8350-8360, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31112177

RESUMO

A detailed study of polycrystalline indium-based In1-x□xIn2S4 (x = 0.16, 0.22, 0.28, and 0.33) thiospinel is presented (□- vacancy). Comprehensive investigation of synthesis conditions, phase composition and thermoelectric properties was performed by means of various diffraction, microscopic and spectroscopic methods. Single-phase α- and ß-In1-x□xIn2S4 were found in samples with 0.16 ≤x≤ 0.22 and x = 0.33 (In2S3), respectively. In contrast, it is shown that In0.72□0.28In2S4 contains both α- and ß-polymorphic modifications. Consequently, the thermoelectric characterization of well-defined α- and ß-In1-x□xIn2S4 is conducted for the first time. α-In1-x□xIn2S4 (x = 0.16 and 0.22) revealed n-type semiconducting behavior, a large Seebeck coefficient (>|200|µV K-1) and moderate charge carrier mobility on the level of ∼20 cm2 V-1 s-1 at room temperature (RT). Decreases in charge carrier concentration (increase of electrical resistivity) and thermal conductivity (even below 0.6 W m-1 K-1 at 760 K) for larger In-content are observed. Although ß-In0.67□0.33In2S4 (ß-In2S3) is a distinct polymorphic modification, it followed the abovementioned trend in thermal conductivity and displayed significantly higher charge carrier mobility (∼104 cm2 V-1 s-1 at RT). These findings indicate that structural disorder in the α-modification affects both electronic and thermal properties in this thiospinel. The reduction of thermal conductivity counterbalances a lowered power factor and, thus, the thermoelectric figure of merit ZTmax = 0.2 at 760 K is nearly the same for both α- and ß-In1-x□xIn2S4.

18.
Dalton Trans ; 46(39): 13446-13455, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28949355

RESUMO

The compounds MNi21B20 (M = In, Sn) have been synthesized and their cubic crystal structure determined (space group Pm3[combining macron]m, lattice parameters a = 7.1730(1) Å and a = 7.1834(1) Å, respectively). The structure can be described as a hierarchical partitioning of space based on a reo-e net formed by Ni3 species with large cubical, cuboctahedral and rhombicuboctahedral voids being filled according to [Ni1@Ni38], [M@Ni312], and [Ni26@B20@Ni324], respectively. The [Ni6@B20] motif inside the rhombicuboctahedral voids features an empty [Ni6] octahedron surrounded by a [B20] cage recently described in E2Ni21B20 (E = Zn, Ga). Position-space bonding analysis using ELI-D and QTAIM space partitioning as well as 2- and 3-center delocalization indices gives strong support to an alternative chemical description of space partitioning based on face-condensed [B@Ni6] trigonal prisms as basic building blocks. The shortest B-B contacts display locally nested 3-center B-B-Ni bonding inside each trigonal prism. This clearly rules out the notion of [Ni6@B20] clusters and leads to the arrangement of 20 face-condensed [B@Ni23Ni33] trigonal prisms resulting in a triple-shell like situation Ni26@B20@Ni324(reo-e), where the shells display comparable intra- and inter-shell bonding. Both compounds are Pauli paramagnets displaying metallic conductivity.

19.
J Phys Condens Matter ; 29(49): 495603, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29099390

RESUMO

The superconducting properties of [Formula: see text]Mo6S8 [[Formula: see text]] Chevrel phase [[Formula: see text] K] are studied on a sample compacted by spark plasma sintering. Both lower ([Formula: see text] mT) and the upper [[Formula: see text] T] critical magnetic fields are obtained from magnetization and electrical resistivity measurements for the first time. The analysis of the low-temperature electronic specific heat indicates [Formula: see text]Mo6S8 to be a two band superconductor with the energy gaps [Formula: see text] meV (95%) and [Formula: see text] meV (5%). Theoretical DFT calculations reveal a much stronger electron-phonon coupling in the studied Chevrel phase compared to earlier reports. Similar to MgB2, the Fermi surface of studied Chevrel phase is formed by two hole-like and one electron-like bands.

20.
J Phys Condens Matter ; 28(16): 165603, 2016 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-27009024

RESUMO

The physical properties of the series CePd3Be(x) (0 ≤ x ≤ 0.47) have been studied. Introducing Be into CePd3 results in a drastic reduction of the Seebeck coefficient from 100 µV K(-1) at 300 K to -2 µV K(-1), respectively. Paramagnetism of Ce(3+) free ions and metallic conduction dominate the physical properties. A structural transition at x = 0.25 is accompanied by a significant lowering of the Kondo temperature and leads to a successive suppression of the thermoelectric performance of CePd3Be(x) with increasing x.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa