Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
2.
Mod Pathol ; 37(4): 100452, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369186

RESUMO

The molecular characterization of male breast cancer (MaBC) has received limited attention in research, mostly because of its low incidence rate, accounting for only 0.5% to 1% of all reported cases of breast cancer each year. Managing MaBC presents significant challenges, with most treatment protocols being adapted from those developed for female breast cancer. Utilizing whole-genome sequencing (WGS) and state-of-the-art analyses, the genomic features of 10 MaBC cases (n = 10) were delineated and correlated with clinical and histopathologic characteristics. Using fluorescence in situ hybridization, an additional cohort of 18 patients was interrogated to supplement WGS findings. The genomic landscape of MaBC uncovered significant genetic alterations that could influence diagnosis and treatment. We found common somatic mutations in key driver genes, such as FAT1, GATA3, SMARCA4, and ARID2. Our study also mapped out structural variants that impact cancer-associated genes, such as ARID1A, ESR1, GATA3, NTRK1, and NF1. Using a WGS-based classifier, homologous recombination deficiency (HRD) was identified in 2 cases, both presenting with deleterious variants in BRCA2. Noteworthy was the observation of FGFR1 amplification in 21% of cases. Altogether, we identified at least 1 potential therapeutic target in 8 of the 10 cases, including high tumor mutational burden, FGFR1 amplification, and HRD. Our study is the first WGS characterization of MaBC, which uncovered potentially relevant variants, including structural events in cancer genes, HRD signatures, and germline pathogenic mutations. Our results demonstrate unique genetic markers and potential treatment targets in MaBC, thereby underlining the necessity of tailoring treatment strategies for this understudied patient population. These WGS-based findings add to the growing knowledge of MaBC genomics and highlight the need to expand research on this type of cancer.


Assuntos
Neoplasias da Mama Masculina , Neoplasias da Mama , Humanos , Masculino , Feminino , Neoplasias da Mama Masculina/genética , Neoplasias da Mama Masculina/terapia , Hibridização in Situ Fluorescente , Mutação , Neoplasias da Mama/patologia , Oncogenes , Mutação em Linhagem Germinativa , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética
3.
N Engl J Med ; 379(15): 1416-1430, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30304655

RESUMO

BACKGROUND: Myeloproliferative neoplasms, such as polycythemia vera, essential thrombocythemia, and myelofibrosis, are chronic hematologic cancers with varied progression rates. The genomic characterization of patients with myeloproliferative neoplasms offers the potential for personalized diagnosis, risk stratification, and treatment. METHODS: We sequenced coding exons from 69 myeloid cancer genes in patients with myeloproliferative neoplasms, comprehensively annotating driver mutations and copy-number changes. We developed a genomic classification for myeloproliferative neoplasms and multistage prognostic models for predicting outcomes in individual patients. Classification and prognostic models were validated in an external cohort. RESULTS: A total of 2035 patients were included in the analysis. A total of 33 genes had driver mutations in at least 5 patients, with mutations in JAK2, CALR, or MPL being the sole abnormality in 45% of the patients. The numbers of driver mutations increased with age and advanced disease. Driver mutations, germline polymorphisms, and demographic variables independently predicted whether patients received a diagnosis of essential thrombocythemia as compared with polycythemia vera or a diagnosis of chronic-phase disease as compared with myelofibrosis. We defined eight genomic subgroups that showed distinct clinical phenotypes, including blood counts, risk of leukemic transformation, and event-free survival. Integrating 63 clinical and genomic variables, we created prognostic models capable of generating personally tailored predictions of clinical outcomes in patients with chronic-phase myeloproliferative neoplasms and myelofibrosis. The predicted and observed outcomes correlated well in internal cross-validation of a training cohort and in an independent external cohort. Even within individual categories of existing prognostic schemas, our models substantially improved predictive accuracy. CONCLUSIONS: Comprehensive genomic characterization identified distinct genetic subgroups and provided a classification of myeloproliferative neoplasms on the basis of causal biologic mechanisms. Integration of genomic data with clinical variables enabled the personalized predictions of patients' outcomes and may support the treatment of patients with myeloproliferative neoplasms. (Funded by the Wellcome Trust and others.).


Assuntos
Calreticulina/genética , Janus Quinase 2/genética , Mutação , Transtornos Mieloproliferativos/genética , Medicina de Precisão , Receptores de Trombopoetina/genética , Teorema de Bayes , DNA de Neoplasias/análise , Progressão da Doença , Intervalo Livre de Doença , Humanos , Análise Multivariada , Transtornos Mieloproliferativos/classificação , Fenótipo , Prognóstico , Modelos de Riscos Proporcionais , Análise de Sequência de DNA
4.
Pediatr Blood Cancer ; 68(10): e29265, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34331515

RESUMO

Very rarely, vasoactive intestinal peptide-related diarrhea (VIP-D) is observed in patients with high-risk neuroblastoma (HR-NB) where the associated fluid and electrolyte abnormalities can pose a major clinical challenge for administering the required aggressive multimodality treatment. Two patients with HR-NB developed VIP-D during induction and were found to have a somatic BRAF V600E mutation. Serum VIP levels and diarrhea promptly resolved in both patients after initiating treatment with BRAF and MEK inhibitors. This illustrates an association of VIP-D with BRAF V600E mutations and demonstrates a therapeutic strategy in the specific context of VIP-D and BRAF V600E mutations in HR-NB patients. The addition of BRAF and MEK inhibitors allows continued conventional tumor-directed treatment by decreasing the severity of symptoms caused by this life-threatening complication.


Assuntos
Diarreia , Proteína Proto-Oncogênica N-Myc , Neuroblastoma , Proteínas Proto-Oncogênicas B-raf , Peptídeo Intestinal Vasoativo , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Mutação , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Peptídeo Intestinal Vasoativo/genética , Peptídeo Intestinal Vasoativo/metabolismo
5.
Nature ; 520(7547): 353-357, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25830880

RESUMO

Cancers emerge from an ongoing Darwinian evolutionary process, often leading to multiple competing subclones within a single primary tumour. This evolutionary process culminates in the formation of metastases, which is the cause of 90% of cancer-related deaths. However, despite its clinical importance, little is known about the principles governing the dissemination of cancer cells to distant organs. Although the hypothesis that each metastasis originates from a single tumour cell is generally supported, recent studies using mouse models of cancer demonstrated the existence of polyclonal seeding from and interclonal cooperation between multiple subclones. Here we sought definitive evidence for the existence of polyclonal seeding in human malignancy and to establish the clonal relationship among different metastases in the context of androgen-deprived metastatic prostate cancer. Using whole-genome sequencing, we characterized multiple metastases arising from prostate tumours in ten patients. Integrated analyses of subclonal architecture revealed the patterns of metastatic spread in unprecedented detail. Metastasis-to-metastasis spread was found to be common, either through de novo monoclonal seeding of daughter metastases or, in five cases, through the transfer of multiple tumour clones between metastatic sites. Lesions affecting tumour suppressor genes usually occur as single events, whereas mutations in genes involved in androgen receptor signalling commonly involve multiple, convergent events in different metastases. Our results elucidate in detail the complex patterns of metastatic spread and further our understanding of the development of resistance to androgen-deprivation therapy in prostate cancer.


Assuntos
Linhagem da Célula , Metástase Neoplásica/patologia , Neoplasias da Próstata/patologia , Androgênios/deficiência , Linhagem da Célula/genética , Células Clonais/metabolismo , Células Clonais/patologia , Análise Mutacional de DNA , Progressão da Doença , Epigênese Genética , Genes Supressores de Tumor , Humanos , Masculino , Metástase Neoplásica/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais/genética
6.
BMC Bioinformatics ; 21(1): 549, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33256603

RESUMO

BACKGROUND: The widespread adoption of high throughput technologies has democratized data generation. However, data processing in accordance with best practices remains challenging and the data capital often becomes siloed. This presents an opportunity to consolidate data assets into digital biobanks-ecosystems of readily accessible, structured, and annotated datasets that can be dynamically queried and analysed. RESULTS: We present Isabl, a customizable plug-and-play platform for the processing of multimodal patient-centric data. Isabl's architecture consists of a relational database (Isabl DB), a command line client (Isabl CLI), a RESTful API (Isabl API) and a frontend web application (Isabl Web). Isabl supports automated deployment of user-validated pipelines across the entire data capital. A full audit trail is maintained to secure data provenance, governance and ensuring reproducibility of findings. CONCLUSIONS: As a digital biobank, Isabl supports continuous data utilization and automated meta analyses at scale, and serves as a catalyst for research innovation, new discoveries, and clinical translation.


Assuntos
Bancos de Espécimes Biológicos , Bases de Dados Factuais , Humanos , Internet , Reprodutibilidade dos Testes , Software , Interface Usuário-Computador
7.
Nature ; 513(7518): 422-425, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25043003

RESUMO

The somatic mutations present in the genome of a cell accumulate over the lifetime of a multicellular organism. These mutations can provide insights into the developmental lineage tree, the number of divisions that each cell has undergone and the mutational processes that have been operative. Here we describe whole genomes of clonal lines derived from multiple tissues of healthy mice. Using somatic base substitutions, we reconstructed the early cell divisions of each animal, demonstrating the contributions of embryonic cells to adult tissues. Differences were observed between tissues in the numbers and types of mutations accumulated by each cell, which likely reflect differences in the number of cell divisions they have undergone and varying contributions of different mutational processes. If somatic mutation rates are similar to those in mice, the results indicate that precise insights into development and mutagenesis of normal human cells will be possible.


Assuntos
Linhagem da Célula/genética , Células Clonais/citologia , Células Clonais/metabolismo , Genoma/genética , Mutagênese/genética , Mutação/genética , Animais , Relógios Biológicos/genética , Divisão Celular , Células Cultivadas , Embrião de Mamíferos/citologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Taxa de Mutação , Organoides/citologia , Organoides/metabolismo , Filogenia , Análise de Sequência de DNA , Cauda/citologia
8.
PLoS Genet ; 13(9): e1007001, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28945760

RESUMO

A variety of models have been proposed to explain regions of recurrent somatic copy number alteration (SCNA) in human cancer. Our study employs Whole Genome DNA Sequence (WGS) data from tumor samples (n = 103) to comprehensively assess the role of the Knudson two hit genetic model in SCNA generation in prostate cancer. 64 recurrent regions of loss and gain were detected, of which 28 were novel, including regions of loss with more than 15% frequency at Chr4p15.2-p15.1 (15.53%), Chr6q27 (16.50%) and Chr18q12.3 (17.48%). Comprehensive mutation screens of genes, lincRNA encoding sequences, control regions and conserved domains within SCNAs demonstrated that a two-hit genetic model was supported in only a minor proportion of recurrent SCNA losses examined (15/40). We found that recurrent breakpoints and regions of inversion often occur within Knudson model SCNAs, leading to the identification of ZNF292 as a target gene for the deletion at 6q14.3-q15 and NKX3.1 as a two-hit target at 8p21.3-p21.2. The importance of alterations of lincRNA sequences was illustrated by the identification of a novel mutational hotspot at the KCCAT42, FENDRR, CAT1886 and STCAT2 loci at the 16q23.1-q24.3 loss. Our data confirm that the burden of SCNAs is predictive of biochemical recurrence, define nine individual regions that are associated with relapse, and highlight the possible importance of ion channel and G-protein coupled-receptor (GPCR) pathways in cancer development. We concluded that a two-hit genetic model accounts for about one third of SCNA indicating that mechanisms, such haploinsufficiency and epigenetic inactivation, account for the remaining SCNA losses.


Assuntos
Variações do Número de Cópias de DNA/genética , Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , Análise de Sequência de DNA , Alelos , Genoma Humano , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Prostatectomia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Deleção de Sequência
9.
N Engl J Med ; 374(23): 2209-2221, 2016 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-27276561

RESUMO

BACKGROUND: Recent studies have provided a detailed census of genes that are mutated in acute myeloid leukemia (AML). Our next challenge is to understand how this genetic diversity defines the pathophysiology of AML and informs clinical practice. METHODS: We enrolled a total of 1540 patients in three prospective trials of intensive therapy. Combining driver mutations in 111 cancer genes with cytogenetic and clinical data, we defined AML genomic subgroups and their relevance to clinical outcomes. RESULTS: We identified 5234 driver mutations across 76 genes or genomic regions, with 2 or more drivers identified in 86% of the patients. Patterns of co-mutation compartmentalized the cohort into 11 classes, each with distinct diagnostic features and clinical outcomes. In addition to currently defined AML subgroups, three heterogeneous genomic categories emerged: AML with mutations in genes encoding chromatin, RNA-splicing regulators, or both (in 18% of patients); AML with TP53 mutations, chromosomal aneuploidies, or both (in 13%); and, provisionally, AML with IDH2(R172) mutations (in 1%). Patients with chromatin-spliceosome and TP53-aneuploidy AML had poor outcomes, with the various class-defining mutations contributing independently and additively to the outcome. In addition to class-defining lesions, other co-occurring driver mutations also had a substantial effect on overall survival. The prognostic effects of individual mutations were often significantly altered by the presence or absence of other driver mutations. Such gene-gene interactions were especially pronounced for NPM1-mutated AML, in which patterns of co-mutation identified groups with a favorable or adverse prognosis. These predictions require validation in prospective clinical trials. CONCLUSIONS: The driver landscape in AML reveals distinct molecular subgroups that reflect discrete paths in the evolution of AML, informing disease classification and prognostic stratification. (Funded by the Wellcome Trust and others; ClinicalTrials.gov number, NCT00146120.).


Assuntos
Leucemia Mieloide Aguda/genética , Mutação , Adulto , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Análise Mutacional de DNA , Epistasia Genética , Fusão Gênica , Genótipo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/terapia , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Nucleofosmina , Prognóstico , Modelos de Riscos Proporcionais , Estudos Prospectivos , Splicing de RNA , Análise de Sobrevida
10.
Genome Res ; 25(6): 814-24, 2015 06.
Artigo em Inglês | MEDLINE | ID: mdl-25963125

RESUMO

Mitochondrial genomes are separated from the nuclear genome for most of the cell cycle by the nuclear double membrane, intervening cytoplasm, and the mitochondrial double membrane. Despite these physical barriers, we show that somatically acquired mitochondrial-nuclear genome fusion sequences are present in cancer cells. Most occur in conjunction with intranuclear genomic rearrangements, and the features of the fusion fragments indicate that nonhomologous end joining and/or replication-dependent DNA double-strand break repair are the dominant mechanisms involved. Remarkably, mitochondrial-nuclear genome fusions occur at a similar rate per base pair of DNA as interchromosomal nuclear rearrangements, indicating the presence of a high frequency of contact between mitochondrial and nuclear DNA in some somatic cells. Transmission of mitochondrial DNA to the nuclear genome occurs in neoplastically transformed cells, but we do not exclude the possibility that some mitochondrial-nuclear DNA fusions observed in cancer occurred years earlier in normal somatic cells.


Assuntos
DNA Mitocondrial/genética , Genoma Humano , Genoma Mitocondrial/genética , Neoplasias/genética , Sequência de Aminoácidos , Linhagem Celular Tumoral , Núcleo Celular/genética , Cromossomos/genética , Variações do Número de Cópias de DNA , Reparo do DNA por Junção de Extremidades , Replicação do DNA , Células HeLa , Humanos , Hibridização in Situ Fluorescente , Mitocôndrias/genética , Dados de Sequência Molecular , Reprodutibilidade dos Testes , Análise de Sequência de DNA
11.
J Pathol ; 236(4): 457-66, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25850943

RESUMO

Multifocal breast cancer (MFBC), defined as multiple synchronous unilateral lesions of invasive breast cancer, is relatively frequent and has been associated with more aggressive features than unifocal cancer. Here, we aimed to investigate the genomic heterogeneity between MFBC lesions sharing similar histopathological parameters. Characterization of different lesions from 36 patients with ductal MFBC involved the identification of non-silent coding mutations in 360 protein-coding genes (171 tumour and 36 matched normal samples). We selected only patients with lesions presenting the same grade, ER, and HER2 status. Mutations were classified as 'oncogenic' in the case of recurrent substitutions reported in COSMIC or truncating mutations affecting tumour suppressor genes. All mutations identified in a given patient were further interrogated in all samples from that patient through deep resequencing using an orthogonal platform. Whole-genome rearrangement screen was further conducted in 8/36 patients. Twenty-four patients (67%) had substitutions/indels shared by all their lesions, of which 11 carried the same mutations in all lesions, and 13 had lesions with both common and private mutations. Three-quarters of those 24 patients shared oncogenic variants. The remaining 12 patients (33%) did not share any substitution/indels, with inter-lesion heterogeneity observed for oncogenic mutation(s) in genes such as PIK3CA, TP53, GATA3, and PTEN. Genomically heterogeneous lesions tended to be further apart in the mammary gland than homogeneous lesions. Genome-wide analyses of a limited number of patients identified a common somatic background in all studied MFBCs, including those with no mutation in common between the lesions. To conclude, as the number of molecular targeted therapies increases and trials driven by genomic screening are ongoing, our findings highlight the presence of genomic inter-lesion heterogeneity in one-third, despite similar pathological features. This implies that deeper molecular characterization of all MFBC lesions is warranted for the adequate management of those cancers.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Mutação , Neoplasias Primárias Múltiplas/genética , Neoplasias Primárias Múltiplas/patologia , Adulto , Idoso , Biomarcadores Tumorais/análise , Neoplasias da Mama/química , Carcinoma Ductal de Mama/química , Carcinoma Intraductal não Infiltrante/química , Análise Mutacional de DNA , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Neoplasias Primárias Múltiplas/química , Fenótipo , Valor Preditivo dos Testes , Receptor ErbB-2/análise , Receptores de Estrogênio/análise , Estudos Retrospectivos
12.
Nature ; 468(7327): 1124-8, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21179169

RESUMO

Covalent modification of histones is fundamental in orchestrating chromatin dynamics and transcription. One example of such an epigenetic mark is the mono-ubiquitination of histones, which mainly occurs at histone H2A and H2B. Ubiquitination of histone H2A has been implicated in polycomb-mediated transcriptional silencing. However, the precise role of the ubiquitin mark during silencing is still elusive. Here we show in human cell lines that ZRF1 (zuotin-related factor 1) is specifically recruited to histone H2A when it is ubiquitinated at Lys 119 by means of a novel ubiquitin-interacting domain that is located in the evolutionarily conserved zuotin domain. At the onset of differentiation, ZRF1 specifically displaces polycomb-repressive complex 1 (PRC1) from chromatin and facilitates transcriptional activation. A genome-wide mapping of ZRF1, RING1B and H2A-ubiquitin targets revealed its involvement in the regulation of a large set of polycomb target genes, emphasizing the key role ZRF1 has in cell fate decisions. We provide here a model of the molecular mechanism of switching polycomb-repressed genes to an active state.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Inativação Gênica , Proteínas Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Ativação Transcricional , Linhagem Celular Tumoral , Cromatina/metabolismo , Mapeamento Cromossômico , Regulação da Expressão Gênica , Células HEK293 , Histonas/metabolismo , Humanos , Modelos Biológicos , Chaperonas Moleculares , Proteínas do Grupo Polycomb , Proteínas de Ligação a RNA , Células U937 , Ubiquitinas/metabolismo
13.
Blood ; 122(22): 3616-27; quiz 3699, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24030381

RESUMO

Myelodysplastic syndromes (MDS) are a heterogeneous group of chronic hematological malignancies characterized by dysplasia, ineffective hematopoiesis and a variable risk of progression to acute myeloid leukemia. Sequencing of MDS genomes has identified mutations in genes implicated in RNA splicing, DNA modification, chromatin regulation, and cell signaling. We sequenced 111 genes across 738 patients with MDS or closely related neoplasms (including chronic myelomonocytic leukemia and MDS-myeloproliferative neoplasms) to explore the role of acquired mutations in MDS biology and clinical phenotype. Seventy-eight percent of patients had 1 or more oncogenic mutations. We identify complex patterns of pairwise association between genes, indicative of epistatic interactions involving components of the spliceosome machinery and epigenetic modifiers. Coupled with inferences on subclonal mutations, these data suggest a hypothesis of genetic "predestination," in which early driver mutations, typically affecting genes involved in RNA splicing, dictate future trajectories of disease evolution with distinct clinical phenotypes. Driver mutations had equivalent prognostic significance, whether clonal or subclonal, and leukemia-free survival deteriorated steadily as numbers of driver mutations increased. Thus, analysis of oncogenic mutations in large, well-characterized cohorts of patients illustrates the interconnections between the cancer genome and disease biology, with considerable potential for clinical application.


Assuntos
Mutação , Síndromes Mielodisplásicas/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Progressão da Doença , Epistasia Genética , Feminino , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mielomonocítica Crônica/genética , Masculino , Pessoa de Meia-Idade , Doenças Mieloproliferativas-Mielodisplásicas/genética , Oncogenes , Prognóstico , Splicing de RNA/genética , Spliceossomos/genética
14.
Haematologica ; 100(2): 214-22, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25381129

RESUMO

Prognostic stratification is critical for making therapeutic decisions and maximizing survival of patients with acute myeloid leukemia. Advances in the genomics of acute myeloid leukemia have identified several recurrent gene mutations whose prognostic impact is being deciphered. We used HaloPlex target enrichment and Illumina-based next generation sequencing to study 24 recurrently mutated genes in 42 samples of acute myeloid leukemia with a normal karyotype. Read depth varied between and within genes for the same sample, but was predictable and highly consistent across samples. Consequently, we were able to detect copy number changes, such as an interstitial deletion of BCOR, three MLL partial tandem duplications, and a novel KRAS amplification. With regards to coding mutations, we identified likely oncogenic variants in 41 of 42 samples. NPM1 mutations were the most frequent, followed by FLT3, DNMT3A and TET2. NPM1 and FLT3 indels were reported with good efficiency. We also showed that DNMT3A mutations can persist post-chemotherapy and in 2 cases studied at diagnosis and relapse, we were able to delineate the dynamics of tumor evolution and give insights into order of acquisition of variants. HaloPlex is a quick and reliable target enrichment method that can aid diagnosis and prognostic stratification of acute myeloid leukemia patients.


Assuntos
Variações do Número de Cópias de DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Leucemia Mieloide Aguda/genética , Mutação/genética , Proteínas de Neoplasias/genética , Algoritmos , Estudos de Casos e Controles , Seguimentos , Humanos , Leucemia Mieloide Aguda/patologia , Estadiamento de Neoplasias , Nucleofosmina , Prognóstico
16.
Am J Surg Pathol ; 48(2): 183-193, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047392

RESUMO

Several reports describing a rare primary liver tumor with histologic features reminiscent of follicular thyroid neoplasms have been published under a variety of descriptive terms including thyroid-like, solid tubulocystic, and cholangioblastic cholangiocarcinoma. Although these tumors are considered to represent histologic variants, they lack classic features of cholangiocarcinoma and have unique characteristics, namely immunoreactivity for inhibin and NIPBL::NACC1 fusions. The purpose of this study is to present clinicopathologic and molecular data for a large series of these tumors to better understand their pathogenesis. We identified 11 hepatic tumors with these features. Immunohistochemical and NACC1 and NIPBL fluorescence in situ hybridization assays were performed on all cases. Four cases had available material for whole-genome sequencing (WGS) analysis. Most patients were adult women (mean age: 42 y) who presented with abdominal pain and large hepatic masses (mean size: 14 cm). Ten patients had no known liver disease. Of the patients with follow-up information, 3/9 (33%) pursued aggressive behavior. All tumors were composed of bland cuboidal cells with follicular and solid/trabecular growth patterns in various combinations, were immunoreactive for inhibin, showed albumin mRNA by in situ hybridization, and harbored the NIPBL::NACC1 fusion by fluorescence in situ hybridization. WGS corroborated the presence of the fusion in all 4 tested cases, high tumor mutational burden in 2 cases, and over 30 structural variants per case in 3 sequenced tumors. The cases lacked mutations typical of conventional intrahepatic cholangiocarcinoma. In this report, we describe the largest series of primary inhibin-positive hepatic neoplasms harboring a NIPBL::NACC1 fusion and the first WGS analysis of these tumors. We propose to name this neoplasm NIPBL:NACC1 fusion hepatic carcinoma.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Adulto , Humanos , Feminino , Hibridização in Situ Fluorescente , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Neoplasias Hepáticas/patologia , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/patologia , Inibinas , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , Proteínas de Ciclo Celular/genética , Proteínas de Neoplasias/genética , Proteínas Repressoras/genética
17.
Cell Genom ; 4(3): 100511, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38428419

RESUMO

The development of cancer is an evolutionary process involving the sequential acquisition of genetic alterations that disrupt normal biological processes, enabling tumor cells to rapidly proliferate and eventually invade and metastasize to other tissues. We investigated the genomic evolution of prostate cancer through the application of three separate classification methods, each designed to investigate a different aspect of tumor evolution. Integrating the results revealed the existence of two distinct types of prostate cancer that arise from divergent evolutionary trajectories, designated as the Canonical and Alternative evolutionary disease types. We therefore propose the evotype model for prostate cancer evolution wherein Alternative-evotype tumors diverge from those of the Canonical-evotype through the stochastic accumulation of genetic alterations associated with disruptions to androgen receptor DNA binding. Our model unifies many previous molecular observations, providing a powerful new framework to investigate prostate cancer disease progression.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Próstata/metabolismo , Mutação , Genômica , Evolução Molecular
18.
Artigo em Inglês | MEDLINE | ID: mdl-37652664

RESUMO

Pilocytic astrocytomas are the most common pediatric brain tumors, typically presenting as low-grade neoplasms. We report two cases of pilocytic astrocytoma with atypical tumor progression. Case 1 involves a 12-yr-old boy with an unresectable suprasellar tumor, negative for BRAF rearrangement but harboring a BRAF p.V600E mutation. He experienced tumor size reduction and stable disease following dabrafenib treatment. Case 2 describes a 6-yr-old boy with a thalamic tumor that underwent multiple resections, with no actionable driver detected using targeted next-generation sequencing. Whole-genome and RNA-seq analysis identified an internal tandem duplication in FGFR1 and RAS pathway activation. Future management options include FGFR1 inhibitors. These cases demonstrate the importance of escalating molecular diagnostics for pediatric brain cancer, advocating for early reflexing to integrative whole-genome sequencing and transcriptomic profiling when targeted panels are uninformative. Identifying molecular drivers can significantly impact treatment decisions and improve patient outcomes.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Masculino , Criança , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Patologia Molecular , Astrocitoma/diagnóstico , Astrocitoma/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Mutação
19.
Blood Adv ; 7(15): 3862-3873, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-36867579

RESUMO

Genomic profiling during the diagnosis of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) in adults is used to guide disease classification, risk stratification, and treatment decisions. Patients for whom diagnostic screening fails to identify disease-defining or risk-stratifying lesions are classified as having B-other ALL. We screened a cohort of 652 BCP-ALL cases enrolled in UKALL14 to identify and perform whole genome sequencing (WGS) of paired tumor-normal samples. For 52 patients with B-other, we compared the WGS findings with data from clinical and research cytogenetics. WGS identified a cancer-associated event in 51 of 52 patients, including an established subtype defining genetic alterations that were previously missed with standard-of-care (SoC) genetics in 5 of them. Of the 47 true B-other ALL, we identified a recurrent driver in 87% (41). A complex karyotype via cytogenetics emerges as a heterogeneous group, including distinct genetic alterations associated with either favorable (DUX4-r) or poor outcomes (MEF2D-r and IGK::BCL2). For a subset of 31 cases, we integrated the findings from RNA sequencing (RNA-seq) analysis to include fusion gene detection and classification based on gene expression. Compared with RNA-seq, WGS was sufficient to detect and resolve recurrent genetic subtypes; however, RNA-seq can provide orthogonal validation of findings. In conclusion, we demonstrated that WGS can identify clinically relevant genetic abnormalities missed with SoC testing as well as identify leukemia driver events in virtually all cases of B-other ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Adulto , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Mutação , Sequenciamento Completo do Genoma , Cariótipo Anormal
20.
Nat Genet ; 55(6): 1022-1033, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37169874

RESUMO

Patients with high-risk neuroblastoma generally present with widely metastatic disease and often relapse despite intensive therapy. As most studies to date focused on diagnosis-relapse pairs, our understanding of the genetic and clonal dynamics of metastatic spread and disease progression remain limited. Here, using genomic profiling of 470 sequential and spatially separated samples from 283 patients, we characterize subtype-specific genetic evolutionary trajectories from diagnosis through progression and end-stage metastatic disease. Clonal tracing timed disease initiation to embryogenesis. Continuous acquisition of structural variants at disease-defining loci (MYCN, TERT, MDM2-CDK4) followed by convergent evolution of mutations targeting shared pathways emerged as the predominant feature of progression. At diagnosis metastatic clones were already established at distant sites where they could stay dormant, only to cause relapses years later and spread via metastasis-to-metastasis and polyclonal seeding after therapy.


Assuntos
Recidiva Local de Neoplasia , Neuroblastoma , Humanos , Recidiva Local de Neoplasia/genética , Neuroblastoma/genética , Evolução Clonal , Mutação , Metástase Neoplásica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa