Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 160(3)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38235795

RESUMO

Interfacial electron transfer (IET) through saturated single-linker and dual-linker groups from a perylene chromophore into nanostructured TiO2 films was studied by ultrafast spectroscopy. Perylene chromophores with one and two propanoic acid linker groups in the peri and ortho positions were investigated. In comparison to previously studied perylenes bound via unsaturated acrylic acid linkers, the chromophores with saturated linkers showed bi-exponential IET dynamics. Two distinct transfer times were observed that indicate the presence of two concurrent binding modes. A comparison between ortho- and peri-substituted sensitizers resulted in slower IET dynamics and weaker electronic coupling for ortho substitution. Finally, IET from sensitizers with saturated linker groups is neither promoted nor hindered by a second linker group. This indicates that only one of the two linkers binds covalently to the surface. This study reveals the importance of the anchor-binding mode and design considerations of the linker for regulating IET.

2.
J Phys Chem A ; 124(23): 4583-4593, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32427477

RESUMO

Defects naturally abound in semiconductor crystal structures and their presence either debilitates or improves device functionality. The increasing trend to strategically implant or remove specific defects to tailor the properties in materials via defect engineering has made it imperative to not only quantify these defects in nanostructures but to do so via efficient contactless techniques. Here we report the use of an ultrafast Kerr-gated microscope system to quantify the defect density at different locations on a single nanowire. By measuring the evolution of nonlinear luminescence dynamics from a nanowire, we are able to extract the individual nonradiative recombination constants and obtain the defect density at locations along the nanowire length. This new method promises fast, reliable, and contactless characterization of single nanoparticles.

3.
J Phys Chem A ; 124(31): 6330-6343, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32654486

RESUMO

The quest to control chromophore/semiconductor properties to enable new technologies in energy and information science requires detailed understanding of charge carrier dynamics at the atomistic level, which can often be attained through the use of model systems. Perylene-bridge-anchor compounds are successful models for studying fundamental charge transfer processes on TiO2, which remains among the most commonly investigated and technologically important interfaces, mostly because of perylene's advantageous electronic and optical properties. Nonetheless, the ability to fully exploit synthetically the substitution pattern of perylene with linker (= bridge-anchor) units remains little explored. Here we developed 2,5-di-tert-butylperylene (DtBuPe)-bridge-anchor compounds with t-Bu group substituents to prevent π-stacking and one or two linker units in both the peri and ortho positions, by employing a combination of Friedel-Crafts alkylations, bromination, iridium-catalyzed borylation, and palladium-catalyzed cross-coupling reactions. Photophysical characterization and computational analysis by density functional theory (DFT) and time-dependent DFT (TD-DFT) were carried out on four DtBuPe acrylic acid derivatives with a single or a double linker in peri (12b), ortho (15b), peri,peri (18b), and ortho,ortho (21b). The energies of the unoccupied orbitals {LUMO, LUMO + 1, LUMO + 2} are strongly affected by the presence of a π-conjugated linker, resulting in a stabilization of these states and a red shift of their absorption and emission spectra, as well as the loss of vibronic structure in the spectrum of the peri,peri compound, consistent with the strong bonding character of this substitution pattern.

4.
Nano Lett ; 18(6): 3565-3570, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29701993

RESUMO

The ability to regulate intracellular gene expression with exogenous nucleic acids such as small interfering RNAs (siRNAs) has substantial potential to improve the study and treatment of disease. However, most transfection agents and nanoparticle-based carriers that are used for the intracellular delivery of nucleic acids cannot distinguish between diseased and healthy cells, which may cause them to yield unintended widespread gene regulation. An ideal delivery system would only silence targeted proteins in diseased tissue in response to an external stimulus. To enable spatiotemporal control over gene silencing, researchers have begun to develop nucleic acid-nanoparticle conjugates that keep their nucleic acid cargo inactive until it is released from the nanoparticle on-demand by externally applied near-infrared laser light. This strategy can overcome several limitations of other nucleic acid delivery systems, but the mechanisms by which these platforms operate remain ill understood. Here, we perform a detailed investigation of the mechanisms by which silica core/gold shell nanoshells (NSs) release conjugated siRNA upon excitation with either pulsed or continuous wave (CW) near-infrared (NIR) light, with the goal of providing insight into how these nanoconjugates can enable on-demand gene regulation. We demonstrate that siRNA release from NSs upon pulsed laser irradiation is a temperature-independent process that is substantially more efficient than siRNA release triggered by CW irradiation. Contrary to literature, which suggests that only pulsed irradiation releases siRNA duplexes, we found that both modes of irradiation release a mixture of siRNA duplexes and single-stranded oligonucleotides, but that pulsed irradiation results in a higher percentage of released duplexes. To demonstrate that the siRNA released from NSs upon pulsed irradiation remains functional, we evaluated the use of NSs coated with green fluorescent protein (GFP)-targeted siRNA (siGFP-NS) for on-demand knockdown of GFP in cells. We found that GFP-expressing cells treated with siGFP-NS and irradiated with a pulsed laser experienced a 33% decrease in GFP expression compared to cells treated with no laser. Further, we observed that light-triggered gene silencing mediated by siGFP-NS is more potent than using commercial transfection agents to deliver siRNA into cells. This work provides unprecedented insight into the mechanisms by which plasmonic NSs release siRNA upon light irradiation and demonstrates the importance of thoroughly characterizing photoresponsive nanosystems for applications in triggered gene regulation.


Assuntos
Preparações de Ação Retardada/química , Nanoconchas/química , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Transfecção , Proteínas de Fluorescência Verde/genética , Humanos , Luz , Imagem Óptica , RNA Interferente Pequeno/genética , Transfecção/métodos
5.
Langmuir ; 34(3): 961-969, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28968498

RESUMO

Vertically aligned ZnO nanowire-based tree-like structures with CuO branches were synthesized on the basis of a multistep seed-mediated hydrothermal approach. The nanotrees form a p-n junction at the branch/stem interface that facilitates charge separation upon illumination. Photoelectrochemical measurements in different solvents show that ZnO/CuO hierarchical nanostructures have enhanced photocatalytic activity compared to that of the nonhierarchical structure of ZnO/CuO, pure ZnO, and pure CuO nanoparticles. The combination of ZnO and CuO in tree-like nanostructures provides opportunities for the design of photoelectrochemical sensors, photocatalytic synthesis, and solar energy conversion.

6.
J Phys Chem A ; 122(8): 2039-2045, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29381068

RESUMO

Molecular sensitization of semiconductor films is an important technology for energy and environmental applications including solar energy conversion, photocatalytic hydrogen production, and water purification. Dye-sensitized films are also scientifically complex and interesting systems with a long history of research. In most applications, photoinduced heterogeneous electron transfer (HET) at the molecule/semiconductor interface is of critical importance, and while great progress has been made in understanding HET, many open questions remain. Of particular interest is the role of combined electronic and vibrational effects and coherence of the dye during HET. The ultrafast nature of the process, the rapid intramolecular vibrational energy redistribution, and vibrational cooling present complications in the study of vibronic coupling in HET. We present the application of a time domain vibrational spectroscopy-pump-degenerate four-wave mixing (pump-DFWM)-to dye-sensitized solid-state semiconductor films. Pump-DFWM can measure Raman-active vibrational modes that are triggered by excitation of the sample with an actinic pump pulse. Modifications to the instrument for solid-state samples and its application to an anatase TiO2 film sensitized by a Zn-porphyrin dye are discussed. We show an effective combination of experimental techniques to overcome typical challenges in measuring solid-state samples with laser spectroscopy and observe molecular vibrations following HET in a picosecond time window. The cation spectrum of the dye shows modes that can be assigned to the linker group and a mode that is localized on the Zn-phorphyrin chromophore and that is connected to photoexcitation.

7.
J Vac Sci Technol A ; 36(4): 041404, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29983480

RESUMO

Recent advances in preservation of the morphology of ZnO nanostructures during dye sensitization required the use of a two-step preparation procedure. The first step was the key for preserving ZnO materials morphology. It required exposing clean ZnO nanostructures to a gas-phase prop-2-ynoic acid (propiolic acid) in vacuum. This step resulted in the formation of a robust and stable surface-bound carboxylate with ethynyl groups available for further modification, for example, with click chemistry. This paper utilizes spectroscopic and microscopic investigations to answer several questions about this modification and to determine if the process can be performed under medium vacuum conditions instead of high vacuum procedures reported earlier. Comparing the results of the preparation process at medium vacuum of 0.5 Torr base pressure with the previously reported investigations of the same process in high vacuum of 10-5 Torr suggests that both processes lead to the formation of the same surface species, confirming that the proposed modification scheme can be widely applicable for ZnO sensitization procedures and does not require the use of high vacuum. Additional analysis comparing the computationally predicted surface structures with the results of spectroscopic investigations yields the more complete description of the surface species resulting from this approach.

8.
Opt Lett ; 41(11): 2462-5, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27244389

RESUMO

A Kerr-gated microscope capable of imaging ultraviolet luminescence with femtosecond time resolution has been developed. The system allows the spatial, spectral, and temporal measurement of UV-emitting samples. The instrumentation was optimized for emission collection in the UV, resulting in sub 90 fs time resolution of gated signals. ZnO nanowires were used to demonstrate the performance of the instrument. The evolution of the emission from a single nanowire was tracked via ultrafast transient spectroscopy and through sequential imaging. Transient dynamics were extracted from a region of intense emission on a single ZnO nanowire. This technique is a powerful tool capable of contactless ultrafast measurements of charge carrier dynamics in single nanoparticles.

9.
Nanotechnology ; 27(13): 135401, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26894995

RESUMO

A new tree-like ZnO/CdSSe nanocomposite with CdSSe branches grown on ZnO nanowires prepared via a two-step chemical vapor deposition is presented. The nanotrees (NTs) are vertically aligned on a substrate. The CdSSe branches result in strong visible light absorption and form a type-II heterojunction with the ZnO stem that facilitates efficient electron transfer. A combination of photoluminescence spectroscopy and lifetime measurements indicates that the NTs are promising materials for applications that benefit from a Z-scheme charge transfer mechanism. Vertically aligned branched ZnO nanowires can provide direct electron transport pathways to substrates and allow for efficient charge separation. These advantages of nanoscale hierarchical heterostructures make ZnO/CdSSe NTs a promising semiconductor material for solar cells, and other opto-electronic devices.

10.
Phys Chem Chem Phys ; 17(12): 7914-23, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25721314

RESUMO

Ultrafast time-resolved measurements were performed on a novel pentafluorophenyl substituted 5,5-dimethyl phlorin derivative in solution and when attached to TiO2 colloidal films. The complex excited state dynamics of this porphyrinoid after S1 and S2 excitation was compared at different wavelengths and can be assigned to several subsequent relaxation mechanisms. The difference between excited state dynamics in the free molecule and when attached to an electron accepting electrode was measured. For both cases the dynamics was compared after excitation to the S1 and the S2 state. For the free molecule in solution an intermediate relaxation step was identified and assigned to a buckling motion of the tetrapyrrole ring. On the electrode, heterogeneous electron transfer (HET) times from both states were very similar and around 50 fs. Surprisingly, the large difference in the density of acceptor states that are resonant with the respective donor level of the molecule does not significantly influence HET dynamics. This result indicates that HET proceeds into intermediate transition states that are different from steady state surface states obtained from experiments or computations. The density of states (DOS) of these transient acceptor states appears not to be directly related to the corresponding surface or bulk DOS.

11.
J Am Chem Soc ; 134(7): 3358-66, 2012 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-22316113

RESUMO

A viologen derivative, 1,1'-di-p-tolyl-(4,4'-bipyridine)-1,1'-diium dichloride (DTV(2+)), was studied in solution and encapsulated in cucurbit[7]uril (CB7), a macrocyclic host. Upon encapsulation, DTV(2+) exhibited dramatically enhanced fluorescence. Aqueous solutions of DTV(2+) were weakly fluorescent (Φ = 0.01, τ < 20 ps), whereas the emission of the DTV(2+)@2CB7 complex was enhanced by 1 order of magnitude (Φ = 0.12, τ = 0.7 ns) and blue-shifted by 35 nm. Similar properties were observed in the presence of NaCl. DTV(2+) in a poly(methyl methacrylate) matrix was fluorescent with a spectrum similar to that observed for the complex in solution. (1)H NMR and UV-vis titrations indicated that the DTV(2+)@2CB7 complex is formed in aqueous solutions with complexation constants K(1) = (1.2 ± 0.3) × 10(4) M(-1) and K(2)= (1.0 ± 0.4) × 10(4) M(-1) in water. Density functional theory and configuration interaction singles calculations suggested that the hindrance of the rotational relaxation of the S(1) state of DTV(2+) caused by encapsulation within the host or a polymer matrix plays a key role in the observed emission enhancement. The absorption and emission spectra of DTV(2+)@2CB7 in water exhibited a large Stokes shift (ΔSt ~ 9000 cm(-1)) and no fine structure. DTV(2+) is a good electron acceptor [E°(DTV(2+)/DTV(•+)) = -0.30 V vs Ag/AgCl] and a strong photooxidant [E°(DTV*(2+)/DTV(•+)) = 0.09 V vs NHE]).

12.
Chemphyschem ; 13(12): 2877-81, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-22532449

RESUMO

The general case of a heterogeneous electron-transfer reaction is realized by ultrafast electron transfer from a light-absorbing molecule to a wide continuum of electronic acceptor states, realizing the so-called wide band limit. Experimental data obtained for perylene dye/TiO(2) systems confirm the predictions of fully quantum mechanical model calculations of the dynamics. The energy distribution of the injected electron shows an energy loss due to excitations of high-energy (quantum) vibrational modes in the ionized perylene moiety. The electron-transfer mechanism is non-adiabatic and the reaction is ultrafast, for example, with a time constant of 9 fs for the COOH anchor-bridge group. The underlying strong coupling of the electronic states to high-energy vibrational modes is a characteristic feature of sensitizer molecules.

13.
Opt Lett ; 36(15): 2904-6, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21808353

RESUMO

Optical Kerr gating is widely used in ultrafast measurements ranging from pulse characterization to spectroscopy and microscopy. We examined the efficiency and the temporal response of three cubic lattice Kerr media, YAG, GGG and BGO, and compared them with the well studied fused silica (fast response, low efficiency) and STO (high efficiency, slow response). YAG and GGG emerged as superior materials for ultrafast spectroscopy and microscopy applications thanks to their fast Kerr response and considerably higher gating efficiency than silica at low gating energies. Importantly, it was found that in collinear geometry all tested materials except STO are capable of reaching nearly 100% transmission.

14.
J Phys Chem B ; 124(13): 2643-2651, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32160469

RESUMO

Lipophilic dyes such as laurdan and prodan are widely used in membrane biology due to a strong bathochromic shift in emission that reports the structural parameters of the membrane such as area per molecule. Disentangling of the factors which control the spectral shift is complicated by the stabilization of a charge-transfer-like excitation of the dye in polar environments. Predicting the emission therefore requires modeling both the relaxation of the environment and the corresponding evolution of the excited state. Here, an approach is presented in which (i) the local environment is sampled by a classical molecular dynamics (MD) simulation of the dye and solvent, (ii) the electronically excited state of prodan upon light absorption is predicted by numerical quantum mechanics (QM), (iii) the iterative relaxation of the environment around the excited dye by MD coupled with the evolution of the excited state is performed, and (iv) the emission properties are predicted by QM. The QM steps are computed using the many-body Green's function in the GW approximation and the Bethe-Salpeter equation with the environment modeled as fixed point charges, sampled in the MD simulation steps. The comparison to ultrafast time-resolved transient absorption measurements demonstrates that the iterative molecular mechanics (MM)/QM approach agrees quantitatively with both the polarity-dependent shift in emission and the time scale over which the charge transfer state is stabilized. Together the simulations and experimental measurements suggest that the evolution into the charge transfer state is slower in amphiphilic solvents.


Assuntos
Simulação de Dinâmica Molecular , 2-Naftilamina/análogos & derivados , Solventes
15.
Nanoscale ; 12(33): 17530-17537, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32812597

RESUMO

Recent advances in manipulating plasmonic properties of metal/semiconductor heterostructures have opened up new avenues for basic research and applications. Herein, we present a versatile strategy for the assembly of arrays of plasmonic metal/semiconductor hemispherical nano-heterostructures (MSHNs) with control over spacing and size of the metal/semiconductor heterostructure array, which can facilitate a wide range of scientific studies and applications. The strategy combines nanosphere lithography for generating the metal core array with solution-based chemical methods for the semiconductor shell that are widely available and kinetically controllable. Periodic arrays of Au/Cu2O and Ag/Cu2O heterostructures are synthesized to demonstrate the approach and highlight the versatility and importance of the tunability of plasmonic properties. The morphology, structure, optical properties, and elemental compositions of the heterostructures were analyzed. This strategy can be important for understanding and manipulating fundamental nanoscale solid-state physical and chemical properties, as well as assembling heterostructures with desirable structure and functionality for applications.

16.
ACS Appl Mater Interfaces ; 11(43): 40490-40502, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31571477

RESUMO

The ZnO/Cu2O heterojunction promises high efficiency in photocurrent conversion and other light-driven processes, but the lattice mismatch between ZnO and Cu2O leads to slow electron transfer and low conversion efficiency. In addition, the stability of Cu2O is still the main challenging and limiting factor for device applications in real environments. CuxO is a mixed semiconductor of CuO and Cu2O, which is a promising alternative to Cu2O in device fabrication due to its better stability and photocatalytic efficiency. In this work, CuxO nanorods were attached to vertically aligned gold-decorated ZnO nanorods, creating a hierarchical ZnO/Au/CuxO nanoforest. In addition, the hierarchical surface shows superhydrophobicity, which can prevent Cu2O degradation by water and oxygen. Femtosecond time-resolved transient absorption spectroscopy was employed to investigate the electron transfer dynamics in the ZnO/Au/CuxO heterojunction. The nanoforest demonstrates enhanced electron mobility, increased lattice match, and higher photocurrent conversion efficiency compared with bare ZnO, CuxO, or ZnO/CuxO.

17.
J Phys Chem Lett ; 9(4): 768-772, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29364670

RESUMO

Films of ZnO nanorods grown by chemical vapor deposition were functionalized with a chromophore in a stepwise process that preserves the surface morphology. In the first step, the ZnO nanorods were functionalized by exposure to prop-2-ynoic acid (propiolic acid) in vacuum, which did bind through the COOH group leading to a ZnO surface functionalized with ethyne moieties (ethyne/ZnO). In the second step, 9-(4-azidophenyl)-2,5-di-tert-butylperylene (DTBPe-Ph-N3) was reacted with the ethyne/ZnO surface via copper-catalyzed azide-alkyne click reaction (CuAAC) in solution to form the DTBPe-functionalized surface (DTBPe/ZnO). The ZnO morphology was preserved after each step, as demonstrated by scanning electron microscopy (SEM). Each step was probed by X-ray photoelectron spectroscopy (XPS), and transient absorption spectroscopy (TA) of the resulting DTBPe/ZnO surface shows interfacial electron transfer following visible light excitation. As expected, attempts to bind the reference compound 1-(4-(8,11-ditert-butylperylen-3-yl)-phenyl)-1H-1,2,3-triazole-4-carboxylic acid (DTBPe-Ph-Tz-COOH) directly from solution lead to etched surfaces (confirmed by SEM) and undefined binding modes (confirmed by TA).

18.
J Phys Chem B ; 110(50): 25383-91, 2006 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-17165985

RESUMO

The dynamics of heterogeneous electron transfer (ET) from the polycyclic aromatic chromophore perylene to nanostructured TiO2 anatase was investigated for two different anchor groups with transient absorption spectroscopy in an ultrahigh vacuum. Data from ultraviolet photoelectron spectroscopy and from linear absorption spectroscopy showed that the donor state of the chromophore was located around 900 meV above the lower edge of the conduction band. With the wide band limit fulfilled the rate of the heterogeneous ET reaction was only controlled by the strength of the electronic coupling and not reduced by Franck-Condon factors. Two different time constants for the electron transfer, i.e., 13 and 28 fs, were measured with carboxylic acid and phosphonic acid as the respective anchor groups. The difference in the ET time constants was explained with the different extension of the donor orbital onto the respective anchor group to reach the empty electronic states of the semiconductor. The time constants were extracted by means of a simple rate equation model. The validity of applying this model on this ultrafast time scale was verified by comparing the rate equation model with an optical Bloch equation model.

19.
J Phys Chem Lett ; 7(16): 3151-6, 2016 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-27482847

RESUMO

Cyclic tetrapyrroles are the active core of compounds with crucial roles in living systems, such as hemoglobin and chlorophyll, and in technology as photocatalysts and light absorbers for solar energy conversion. Zinc-tetraphenylporphyrin (Zn-TPP) is a prototypical cyclic tetrapyrrole that has been intensely studied in past decades. Because of its importance for photochemical processes the optical properties are of particular interest, and, accordingly, numerous studies have focused on light absorption and excited-state dynamics of Zn-TPP. Relaxation after photoexcitation in the Soret band involves internal conversion that is preceded by an ultrafast process. This relaxation process has been observed by several groups. Hitherto, it has not been established if it involves a higher lying "dark" state or vibrational relaxation in the excited S2 state. Here we combine high time resolution electronic and vibrational spectroscopy to show that this process constitutes vibrational relaxation in the anharmonic S2 potential.

20.
J Vis Exp ; (117)2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27929463

RESUMO

A two-step chemical vapor deposition procedure is here employed to prepare tree-like hierarchical ZnO/CdSSe hetero-nanostructures. The structures are composed of CdSSe branches grown on ZnO nanowires that are vertically aligned on a transparent sapphire substrate. The morphology was measured via scanning electron microscopy. The crystal structure was determined by X-ray powder diffraction analysis. Both the ZnO stem and CdSSe branches have a predominantly wurtzite crystal structure. The mole ratio of S and Se in the CdSSe branches was measured by energy dispersive X-ray spectroscopy. The CdSSe branches result in strong visible light absorption. Photoluminescence (PL) spectroscopy showed that the stem and branches form a type-II heterojunction. PL lifetime measurements showed a decrease in the lifetime of emission from the trees when compared to emission from individual ZnO stems or CdSSe branches and indicate fast charge transfer between CdSSe and ZnO. The vertically aligned ZnO stems provide a direct electron transport pathway to the substrate and allow for efficient charge separation after photoexcitation by visible light. The combination of the abovementioned properties makes ZnO/CdSSe nanotrees promising candidates for applications in solar cells, photocatalysis, and opto-electronic devices.


Assuntos
Nanoestruturas , Óxido de Zinco , Óxido de Alumínio , Compostos de Cádmio , Luz , Nanofios
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa