Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 374(3): 404-419, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32605972

RESUMO

Here we describe for the first time the distinctive pharmacological profile for (3S)-3-(2,3-difluorophenyl)-3-methoxypyrrolidine (IRL752), a new phenyl-pyrrolidine derivative with regioselective central nervous system transmission-enhancing properties. IRL752 (3.7-150 µmol/kg, s.c.) was characterized through extensive in vivo studies using behavioral, tissue neurochemical, and gene expression as well as microdialysis methods. Behaviorally, the compound normalized tetrabenazine-induced hypoactivity, whereas it was unable to stimulate basal locomotion in normal animals or either accentuate or reverse hyperactivity induced by amphetamine or MK-801. IRL752 induced but minor changes in monoaminergic tissue neurochemistry across noradrenaline (NA)- and dopamine (DA)-dominated brain regions. The expression of neuronal activity-, plasticity-, and cognition-related immediate early genes (IEGs), however, increased by 1.5-fold to 2-fold. Furthermore, IRL752 dose-dependently enhanced cortical catecholamine dialysate output to 600%-750% above baseline, whereas striatal DA remained unaltered, and NA rose to ∼250%; cortical and hippocampal dialysate acetylcholine (ACh) increased to ∼250% and 190% above corresponding baseline, respectively. In line with this cortically preferential transmission-promoting action, the drug was also procognitive in the novel object recognition and reversal learning tests. In vitro neurotarget affinity and functional data coupled to drug exposure support the hypothesis that 5-hydroxytryptamine 7 receptor and α2(C)-adrenoceptor antagonism are key contributors to the in vivo efficacy and original profile of IRL752. The cortical-preferring facilitatory impact on catecholamine (and ACh) neurotransmission, along with effects on IEG expression and cognition-enhancing features, are in line with the potential clinical usefulness of IRL752 in conditions wherein these aspects may be dysregulated, such as in axial motor and cognitive deficits in Parkinson disease. SIGNIFICANCE STATEMENT: This report describes the distinctive preclinical profile of (3S)-3-(2,3-difluorophenyl)-3-methoxypyrrolidine (IRL752). Its in vivo neurochemical, behavioral, microdialysis, and gene expression properties are consistent with a cortically regioselective facilitatory impact on catecholaminergic and cholinergic neurotransmission accompanied by cognitive impairment-reversing features. The pharmacological characteristics of IRL752 are in line with the clinical usefulness of IRL752 in conditions wherein these aspects may be dysregulated, such as in axial motor and cognitive deficits in Parkinson disease.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa