Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Immunol Invest ; 51(6): 1694-1706, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35023444

RESUMO

The microRNA miR-30a has been reported to mitigate podocyte damage and resist injurious factors in lupus nephritis (LN), but the precise molecular mechanisms underlying these effects remain elusive. We hypothesized that miR-30a can ameliorate podocyte injury by downregulating the Notch1 signaling pathway and investigated the role of miR-30a in the pathogenesis of podocyte-treated with Immunoglobulin G from patients with LN (IgG-LN). The study enrolled 30 patients from new-onset systemic lupus erythematosus and 28 healthy individuals, then evaluated the levels of their serum miR-30a using RT-qPCR. Additionally, MPC5 cells were transfected with NICD-vector to overexpress Notch1, then with miR-30a mimics or inhibitors to determine miR-30a effects on Notch1. Analysis of function and regulatory mechanisms were performed with RT-qPCR, Western blotting, and CCK8 assays. Furthermore, we verified the candidate sequence targeted by miR-30a using a luciferase reporter gene assay. We observed a significant decrease in the serum miR-30a levels in patients with LN. Also, in IgG-LN-treated podocytes, miR-30a decreased and Notch1 expression was elevated. Bioinformatic analysis and transfection experiments revealed that Notch1 is a direct target of miR-30a. Further supporting this finding, miR-30a upregulation appeared to alleviate IgG-LN-treated podocyte injury, and Notch1 overexpression reversed this effect. To conclude, miR-30a can ameliorate podocyte injury via suppression of the Notch1 signaling pathway.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , MicroRNAs , Podócitos , Humanos , Imunoglobulina G/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Nefrite Lúpica/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Podócitos/metabolismo , Podócitos/patologia , Receptor Notch1/genética , Receptor Notch1/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa