Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Neuroinflammation ; 20(1): 143, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37322469

RESUMO

BACKGROUND: Germinal matrix hemorrhage is a devastating disease of pre-term infancy commonly resulting in post-hemorrhagic hydrocephalus, periventricular leukomalacia, and subsequent neurocognitive deficits. We demonstrate vascular expression of the adhesion molecule P-selectin after GMH and investigate a strategy to specifically target complement inhibition to sites of P-selectin expression to mitigate the pathological sequelae of GMH. METHODS: We prepared two fusion proteins consisting of different anti-P-selectin single chain antibodies (scFv's) linked to the complement inhibitor Crry. One scFv targeting vehicle (2.12scFv) blocked the binding of P-selectin to its PSGL-1 ligand expressed on leukocytes, whereas the other targeting vehicle (2.3scFv) bound P-selectin without blocking ligand binding. Post-natal C57BL/6 J mice on day 4 (P4) were subjected to collagenase induced-intraventricular hemorrhage and treated with 2.3Psel-Crry, 2.12Psel-Crry, or vehicle. RESULTS: Compared to vehicle treatment, 2.3Psel-Crry treatment after induction of GMH resulted in reduced lesion size and mortality, reduced hydrocephalus development, and improved neurological deficit measurements in adolescence. In contrast, 2.12Psel-Crry treatment resulted in worse outcomes compared to vehicle. Improved outcomes with 2.3Psel-Crry were accompanied by decreased P-selectin expression, and decreased complement activation and microgliosis. Microglia from 2.3Psel-Crry treated mice displayed a ramified morphology, similar to naïve mice, whereas microglia in vehicle treated animals displayed a more ameboid morphology that is associated with a more activated status. Consistent with these morphological characteristics, there was increased microglial internalization of complement deposits in vehicle compared to 2.3Psel-Crry treated animals, reminiscent of aberrant C3-dependent microglial phagocytosis that occurs in other (adult) types of brain injury. In addition, following systemic injection, 2.3Psel-Crry specifically targeted to the post-GMH brain. Likely accounting for the unexpected finding that 2.12Psel-Crry worsens outcome following GMH was the finding that this construct interfered with coagulation in this hemorrhagic condition, and specifically with heterotypic platelet-leukocyte aggregation, which express P-selectin and PSGL-1, respectively. CONCLUSIONS: GMH induces expression of P-selectin, the targeting of which with a complement inhibitor protects against pathogenic sequelae of GMH. A dual functioning construct with both P-selectin and complement blocking activity interferes with coagulation and worsens outcomes following GMH, but has potential for treatment of conditions that incorporate pathological thrombotic events, such as ischemic stroke.


Assuntos
Hemorragia Cerebral , Hidrocefalia , Animais , Camundongos , Hemorragia Cerebral/patologia , Inativadores do Complemento , Proteínas do Sistema Complemento , Ligantes , Camundongos Endogâmicos C57BL , Selectina-P/metabolismo
2.
Langmuir ; 39(29): 10199-10208, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37436938

RESUMO

Superhydrophobic surfaces have shown significant potential for the passive anti-icing application due to their unique water repellency. Reducing the contact time between the impacting droplets and the underlying surfaces with certain textures, especially applying the pancake bouncing mechanism, is expected to eliminate droplet icing upon impingement. However, the anti-icing performance of such superhydrophobic surfaces against the impact of supercooled water droplets has not yet been examined. Therefore, we fabricated a typical post-array superhydrophobic surface (PSHS) and a flat superhydrophobic surface (FSHS), to study the droplet impact dynamics on them with controlled temperature and humidity. The contact time and the bouncing behavior on these surfaces and their dependence on the surface temperature, Weber number, and surface frost were systematically investigated. The conventional rebound and full adhesion were observed on the FSHS, and the adhesion is mainly induced by the penetration of the droplet into the surface micro/nanostructures and the consequent Cassie-to-Wenzel transition. On the PSHS, four distinct regimes including pancake rebound, conventional rebound, partial rebound, and full adhesion were observed, where the contact time increases correspondingly. Over a certain Weber number range, the pancake rebound regime where the droplet bounces off the surface with a dramatically shortened contact time benefits the anti-icing performance. By further decreasing the surface temperature, the pancake rebound turns into the conventional rebound, where the droplet is not levitated after the capillary emptying process. Our scale analysis indicates that the frost between the posts reduces the capillary energy stored during the downward penetration, resulting in the failure of the pancake bouncing. A droplet adheres onto the frosted surface at sufficiently low temperature, especially at larger Weber numbers, on account of the coupling influence of droplet nucleation and wetting transition.

3.
Altern Ther Health Med ; 29(8): 364-369, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37632963

RESUMO

Background: Ovarian cancer is the leading cause of death linked to gynecological cancers. Notch1, as an important component of Notch signaling, plays an important role in a variety of cancers. This study aims to discuss the mechanisms through which Notch 1 influences the development of ovarian cancer. Methods: To design and establish the short hairpin (sh) RNA for targeting Notch 1, we transfected THP-1 cells (one of the human macrophagic lines). The cells were divided into shRNA negative control (NC) group and the Notch 1 shRNA group. The CoC1 cells and THP-1 cells (human mononuclear macrophages) are co-cultured, which are injected into the nude mice subcutaneously based on proposition. The sizes of tumors and their volumes are observed through HE staining. Flow cytometry is used to sort out macrophages from subcutaneous tumors of nude mice, whose protein-related expression is detected through western blot. Then the NC group and the Notch 1 shRNA group in the co-culture system are treated with PI3K/mTOR Inhibitor-13 sodium (200 nM) for 48h and then co-cultured with human endothelial cell lines HUVEC, CoC1, and THP-1 to test the tube-forming capacity of HUVEC cells in each group to detect the protein-related expression in THP-1 cells using western blot. Results: It is seen that the Notch 1 shRNA group includes a significantly larger tumor size, decreased relative expression, and the obvious increase of the relative protein expression in p-PI3K, p-mTOR, HIF1α, and VEGF compared with the NC group. Through tube-forming experiments, the Notch1 shRNA group significantly increased the number of HUVEC tubes. However, after the use of PI3K/mTOR Inhibitor-13 sodium, the number of tubes decreased in the NC and Notch1 shRNA groups, and there is no significant discrepancy in comparison to the NC group. The in vitro western blotting results indicate no obvious variation of Notch 1's relative protein expression in both the NC group and Notch 1 shRNA group after the use of PI3K/mTOR Inhibitor-13 sodium, while the relative protein expression of p-PI3K, p-mTOR, HIF1α, and VEGF was significantly reduced and there was no significant difference. Conclusion: This study found that specific knockout of Notch 1 in tumor-associated macrophages will promote the activation of the PI3K/mTOR signaling pathway and the expression of HIF1α and VEGF, thus promoting angiogenesis and the development of ovarian cancer. Thus, this study provides insight into novel prognostic biomarkers and therapeutic targets for the treatment and research of ovarian cancer.


Assuntos
Neoplasias Ovarianas , Fator A de Crescimento do Endotélio Vascular , Animais , Camundongos , Humanos , Feminino , Camundongos Nus , Fator A de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Sódio/metabolismo , Proliferação de Células , Apoptose
4.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37373319

RESUMO

Germinal matrix hemorrhage (GMH) is a pathology that occurs in infancy, with often devastating long-term consequences. Posthemorrhagic hydrocephalus (PHH) can develop acutely, while periventricular leukomalacia (PVL) is a chronic sequala. There are no pharmacological therapies to treat PHH and PVL. We investigated different aspects of the complement pathway in acute and chronic outcomes after murine neonatal GMH induced at postnatal day 4 (P4). Following GMH-induction, the cytolytic complement membrane attack complex (MAC) colocalized with infiltrating red blood cells (RBCs) acutely but not in animals treated with the complement inhibitor CR2-Crry. Acute MAC deposition on RBCs was associated with heme oxygenase-1 expression and heme and iron deposition, which was reduced with CR2-Crry treatment. Complement inhibition also reduced hydrocephalus and improved survival. Following GMH, there were structural alterations in specific brain regions linked to motor and cognitive functions, and these changes were ameliorated by CR2-Crry, as measured at various timepoints through P90. Astrocytosis was reduced in CR2-Crry-treated animals at chronic, but not acute, timepoints. At P90, myelin basic protein and LAMP-1 colocalized, indicating chronic ongoing phagocytosis of white matter, which was reduced by CR2-Crry treatment. Data indicate acute MAC-mediated iron-related toxicity and inflammation exacerbated the chronic effects of GMH.


Assuntos
Hidrocefalia , Camundongos , Animais , Hidrocefalia/complicações , Proteínas do Sistema Complemento , Hemorragia Cerebral/complicações , Inflamação/complicações , Complexo de Ataque à Membrana do Sistema Complemento , Ferro , Proteínas Recombinantes de Fusão
5.
J Org Chem ; 87(14): 9232-9241, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35748751

RESUMO

We herein report the first visible-light-induced hydromono- and difluoroalkylations of alkenes with inexpensive and easily accessible α-fluoro carboxylic acids. This metal-free protocol exhibits mild conditions, high efficiency, and excellent functional-group tolerance, providing a straightforward approach to mono- and difluoroalkylated alkanes. Moreover, the fluorine effect on the hydrofluoroalkylation reaction is discussed in detail.

6.
Langmuir ; 34(11): 3533-3540, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29436832

RESUMO

A droplet impacting on a superhydrophobic surface exhibits complete bouncing. The impacting process usually consists of spreading and retracting stages, during which the droplet contacts the underlying substrate. Recent research has been devoted to reducing the contact time using textured surfaces with different morphologies or flexibilities. Here, we design submillimeter superhydrophobic ridges and show that impacting droplets bounce off the surface immediately after capillary emptying in a petal-like shape at a certain Weber number range. The absence of a horizontal retraction process in two directions leads to ∼70% reduction in contact time. We demonstrate that the petal bouncing is attributed to the synergistic cooperation of the hierarchical structures and anisotropic property, which endows effective energy storage and release. When touching the bottom of the grooves, obvious flying wings appear along the ridges with a velocity component in the vertical direction, which help the energy releasing process in achieving fast droplet detachment. At higher Weber numbers, the anisotropic surface distorts the mass distribution and promotes uniform fragmentation of the droplet, and therefore the overall contact time is dramatically reduced. Simple analyses are proposed to explain these phenomena, showing a good agreement with the experimental results. The contact time reduction on anisotropic superhydrophobic surfaces is expected to have a great influence on the design and fabrication of anti-icing and self-cleaning surfaces.

7.
J Cell Commun Signal ; 17(2): 287-296, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37245186

RESUMO

Skin primarily comprises a collagen-rich extracellular matrix (ECM) that provides structural and functional support to the skin. Aging causes progressive loss and fragmentation of dermal collagen fibrils, leading to thin and weakened skin (Dermal aging). We previously reported that CCN1 is elevated in naturally aged human skin, photoaged human skin, and acute UV-irradiated human skin dermal fibroblasts in vivo. Elevated CCN1 alters the expression of numerous secreted proteins that have deleterious effects on the dermal microenvironment, impairing the structural integrity and function of the skin. Here we show that CCN1 is predominantly elevated in the human skin dermis by UV irradiation and accumulated in the dermal extracellular matrix. Laser capture microdissection indicated that CCN1 is predominantly induced in the dermis, not in the epidermis, by acute UV irradiation in human skin in vivo. Interestingly, while UV-induced CCN1 in the dermal fibroblasts and in the medium is transient, secreted CCN1 accumulates in the ECM. We explored the functionality of the matrix-bound CCN1 by culturing dermal fibroblasts on an acellular matrix plate that was enriched with a high concentration of CCN1. We observed that matrix-bound CCN1 activates integrin outside-in signaling resulting in the activation of FAK and its downstream target paxillin and ERK, as well as elevated MMP-1 and inhibition of collagen, in human dermal fibroblasts. These data suggest that accumulation of CCN1 in the dermal ECM is expected to progressively promote the aging of the dermis and thereby negatively impact the function of the dermis.

8.
Res Sq ; 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36909595

RESUMO

Background Germinal Matrix Hemorrhage is a devastating disease of pre-term infancy commonly resulting in post-hemorrhagic hydrocephalus, periventricular leukomalacia, and subsequent neurocognitive deficits. We demonstrate vascular expression of the adhesion molecule P-selectin after GMH and investigate a strategy to specifically target complement inhibition to sites of P-selectin expression to mitigate the pathological sequelae of GMH. Methods We prepared two fusion proteins consisting of different anti-P-selectin single chain antibodies (scFv's) linked to the complement inhibitor Crry. One scFv targeting vehicle (2.12scFv) blocked the binding of P-selectin to its PSGL-1 ligand expressed on leukocytes, whereas the other targeting vehicle (2.3scFv) bound P-selectin without blocking ligand binding. Post-natal mice on day 4 (P4) were subjected to collagenase induced-intraventricular hemorrhage and treated with 2.3Psel-Crry, 2.12Psel-Crry, or vehicle. Results Compared to vehicle treatment, 2.3Psel-Crry treatment after induction of GMH resulted in reduced lesion size and mortality, reduced hydrocephalus development, and improved neurological deficit measurements in adolescence. In contrast, 2.12Psel-Crry treatment resulted in worse outcomes compared to vehicle. Improved outcomes with 2.3Psel-Crry were accompanied by decreased P-selectin expression, and decreased complement activation and microgliosis. Microglia from 2.3Psel-Crry treated mice displayed a ramified morphology, similar to naïve mice, whereas microglia in vehicle treated animals displayed a more ameboid morphology that is associated with a more activated status. Consistent with these morphological characteristics, there was increased microglial internalization of complement deposits in vehicle compared to 2.3Psel-Crry treated animals, reminiscent of aberrant C3-dependent microglial phagocytosis that occurs in other (adult) types of brain injury. Also, following systemic injection, 2.3Psel-Crry specifically targeted to the post-GMH brain. Likely accounting for the unexpected finding that 2.12Psel-Crry worsens outcome following GMH was the finding that this construct interfered with coagulation in this hemorrhagic condition, and specifically with heterotypic platelet-leukocyte aggregation, which express P-selectin and PSGL-1, respectively. Conclusion GMH induces expression of P-selectin, the targeting of which with a complement inhibitor protects against pathogenic sequelae of GMH. A dual functioning construct with both P-selectin and complement blocking activity interferes with coagulation and worsens outcomes following GMH, but has potential for treatment of conditions that incorporate pathological thrombotic events, such as ischemic stroke.

9.
Life Sci ; 320: 121560, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36893940

RESUMO

AIMS: Circular RNAs are widely expressed in various cancers and play important roles in tumorigenesis and tumor progression. The function and mechanism of circSMARCA5 in lung adenocarcinoma however remains unclear. MAIN METHODS: QRT-PCR analysis was applied for determining circSMARCA5 expression in lung adenocarcinoma patient tumor tissues and cells. Molecular biological assays were used for investigating the role of circSMARCA5 in lung adenocarcinoma progression. Luciferase reporter and bioinformatics assays were used for identifying the underlying mechanism. KEY FINDINGS: In this study, we observed that circSMARCA5 expression was decreased in lung adenocarcinoma tissues but silencing of circSMARCA5 in lung adenocarcinoma cells inhibited cell proliferation, colony formation, migration and invasion. Mechanistically, we found EGFR, c-MYC and p21 were down-regulated upon circSMARCA5 knockdown. MiR-17-3p efficiently down- regulated EGFR expression via directly binding to EGFR mRNA. SIGNIFICANCE: These studies suggest that circSMARCA5 functions as an oncogene via targeting miR-17-3p-EGFR axis and may represent a promising therapeutic target for lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Humanos , MicroRNAs/metabolismo , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Adenocarcinoma de Pulmão/genética , Proliferação de Células/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
10.
JID Innov ; 2(3): 100111, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35480397

RESUMO

CCN2, a member of the CCN family of matricellular proteins, is a key mediator and biomarker of tissue fibrosis. We previously reported that CCN2 is significantly reduced in aged human dermis, which contributes to dermal aging through the downregulation of collagen production, the major structural protein in the skin. In this study, we investigated the underlying mechanisms of the age-related downregulation of CCN2 in human skin dermal fibroblasts. Dermal fibroblasts isolation and laser-capture microdissection‒coupled RT-PCR from human skin confirmed that age-related reduction of CCN2 expression is regulated by epigenetics. Mechanistic investigation revealed that age-related reduction of CCN2 is regulated by impaired dermal fibroblast spreading/cell size, which is a prominent feature of aged dermal fibroblasts in vivo. Gain-of-function and loss-of-function analysis confirmed that age-related downregulation of CCN2 is regulated by YAP/TAZ in response to reduced cell size. We further confirmed that restoration of dermal fibroblast size rapidly reversed the downregulation of CCN2 in a YAP/TAZ-dependent manner. Finally, we confirmed that reduced YAP/TAZ nuclear staining is accompanied by loss of CCN2 in aged human skin in vivo. Our data reveal a mechanism by which age-related reduction in fibroblast spreading/size drives YAP/TAZ-dependent downregulation of CCN2 expression, which in turn contributes to loss of collagen in aged human skin.

11.
Chem Commun (Camb) ; 58(8): 1147-1150, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34981099

RESUMO

A mild and efficient method for direct C-H monofluoroalkylation of heteroarenes with easily accessible and inexpensive α-fluorocarboxylic acids has been developed. This silver-catalyzed reaction affords mono- and bis-monofluoroalkylated heteroarenes in good yields under mild conditions, and the solvent effect on the monofluoroalkylation reaction is discussed in detail.

12.
J Cell Commun Signal ; 16(3): 421-432, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35060094

RESUMO

Collagen 17A1 (COL17A1) is a transmembrane structural component of the hemidesmosome that mediate adhesion of keratinocytes to the underlying membrane. Recent work in mouse showed that COL17A1 deficiency leads to premature skin aging. Although the role COL17A1 in skin aging is becoming recognized in mouse models, its connection to human skin natural aging/photoaging/ultraviolet (UV)-irradiated human skin has received little attention. To determine COL17A1 expression in naturally aged and photoaged as well as acutely UV irradiated human skin, skin samples were obtained from: (1) young (N = 10, 26.7±1.3 years) and aged (N = 10, 84.0 ± 1.7 years) sun-protected buttock skin; (2) photoaged extensor forearm and subject matched sun-protected underarm skin (N = 6, 56.0 ± 3.4 years); (3) solar-simulated UV-irradiated buttock skin (N = 6, 51.2 ± 3.6 years). COL17A1 levels were determined by immunohistology and RT-PCR, and the potential role of COL17A1 in epidermal aging was investigated by immunostaining of the marker for interfollicular epidermal stem cells and keratinocytes proliferation. We found that COL17A1 is specifically expressed in interfollicular epidermal stem cell niches, and that significantly reduced in naturally aged, photoaged, and acute UV-irradiated human skin in vivo. COL17A1 is identified as keratinocyte-specific collagen, and UV irradiation significantly downregulates COL17A1 expression in keratinocytes. Reduced expression of COL17A1 is positively correlated with impaired regeneration of keratinocytes and reduced dermal-epidermal junction as well as thin epidermis in aged human skin (epidermal aging). We also confirmed that keratinocyte-specific integrin ß4 (ITGB4), which interacts with COL17A1, is reduced in aged human skin. Mechanistically, we found that matrix metalloproteinases (MMPs) are responsible for UV-mediated COL17A1 degradation in both in vitro keratinocytes and in vivo mouse skin. These data suggest the possible links between reduced expression of COL17A1 and epidermal aging in human skin.

13.
Dev Biol ; 340(2): 605-12, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20178781

RESUMO

Steroid hormone and insulin/insulin-like growth factor signaling (IIS) pathways control development and lifespan in the nematode Caenorhabditis elegans by regulating the activity of the nuclear receptor DAF-12 and the FoxO transcription factor DAF-16, respectively. The DAF-12 ligands Delta(4)- and Delta(7)-dafachronic acid (DA) promote bypass of the dauer diapause and proper gonadal migration during larval development; in adults, DAs influence lifespan. Whether Delta(4)- and Delta(7)-DA have unique biological functions is not known. We identified the 3-beta-hydroxysteroid dehydrogenase (3betaHSD) family member HSD-1, which participates in Delta(4)-DA biosynthesis, as an inhibitor of DAF-16/FoxO activity. Whereas IIS promotes the cytoplasmic sequestration of DAF-16/FoxO, HSD-1 inhibits nuclear DAF-16/FoxO activity without affecting DAF-16/FoxO subcellular localization. Thus, HSD-1 and IIS inhibit DAF-16/FoxO activity via distinct and complementary mechanisms. In adults, HSD-1 was required for full lifespan extension in IIS mutants, indicating that HSD-1 interactions with IIS are context-dependent. In contrast to the Delta(7)-DA biosynthetic enzyme DAF-36, HSD-1 is dispensable for proper gonadal migration and lifespan extension induced by germline ablation. These findings provide insights into the molecular interface between DA and IIS pathways and suggest that Delta(4)- and Delta(7)-DA pathways have unique as well as overlapping biological functions in the control of development and lifespan.


Assuntos
Caenorhabditis elegans/fisiologia , Colestenos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Longevidade/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Genes de Helmintos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Longevidade/genética , Modelos Biológicos , Mutação , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , Transgenes
14.
J Phys Condens Matter ; 34(9)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34814124

RESUMO

Regulating the impact dynamics of water droplets on a solid surface is of great significance for some practical applications. In this study, the droplet impingement on a flexible superhydrophobic surface arrayed with micro-scale grooves was investigated experimentally. The surface was curved into cylindrical shapes with certain curvatures from two orthogonal directions, where axial and circumferential grooves were formed, respectively. The effects of curvature diameter and Weber number, as well as the orientation of grooves on droplet spreading and retracting dynamics were analyzed and explained. Results show that the circumferential grooves promote the spreading of a droplet in the azimuthal direction, where the droplet rebounds from the surface with a stretched shape. This mechanism further reduces the contact time of impacting droplets on the superhydrophobic surface compared to the other curving mode.

15.
Am J Transl Res ; 13(3): 1221-1232, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841651

RESUMO

MiR-22-3p has been reported to be down-regulated in several cancers, but its expression pattern and roles in lung cancer is unclear. Given the crucial role of microRNAs in cancer progression, we examined the expression and function of miR-22-3p in lung adenocarcinoma. MiR-22-3p expression in lung cancer tissues and cell lines was measured by qRT-PCR. Cell proliferation was measured by WST-1 and colony formation assays were used to reveal the role of miR-22-3p in lung cancer in vitro. MiR-22-3p was notably down-regulated in lung cancer tissues as compared to normal lung tissues, but it was not associated with the clinical characteristics of tumor stage, differentiation and patient's smoking status. Colony formation ability and cell proliferation were suppressed by miR-22-3p mimics in lung cancer cell lines. Mechanistically, miR-22-3p mimics could reduce MET and STAT3 protein expression and induce apoptosis as measured by PARP protein. We conclude that miR-22-3p may play a tumor suppressor role via inhibiting MET-STAT3 signaling and have potential to be a therapeutic target and biomarker in lung adenocarcinoma.

16.
Mol Ther Nucleic Acids ; 22: 1164-1175, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33312753

RESUMO

Long noncoding RNA (lncRNA) LINC00857 has been reported to be upregulated in lung cancer and related to poor patient survival. It can regulate cell proliferation and tumor growth in lung cancer as well as several other cancers. However, the underlying molecular mechanisms that are regulated by LINC00857 are unclear. In this study, we found that LINC00857 silencing can impair cell proliferation in 14 different genomic alterations of lung cancer cell lines. These alterations are EGFR, KRAS, TP53, MET, and LKB1 mutations. The cell apoptosis and autophagy were induced upon LINC00857 silencing in lung cancer cells. Mechanistically, LINC00857 can bind to the Y-box binding protein 1 (YBX1) protein, prevent it from proteasomal degradation, and increase its nuclear translocation. LINC00857 regulated MET expression via YBX1 at a transcriptional level. Induced cell autophagy by LINC00857 knockdown was mainly through increased phosphor-AMP-activated protein kinase (p-AMPK)a. Collectively, LINC00857-YBX1-MET/p-AMPKa signaling is critical to regulate cell proliferation, apoptosis, and autophagy, which may provide a potential clinically therapeutic target in lung cancer.

17.
Autophagy ; 16(4): 659-671, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31232177

RESUMO

The role of circular RNA in cancer is emerging. A newly reported circular RNA HIPK3 (circHIPK3) is critical in cell proliferation of various cancer types, although its role in non-small cell lung cancer (NSCLC), has yet to be elucidated. Our results provided evidence that silencing of circHIPK3 significantly impaired cell proliferation, migration, invasion and induced macroautophagy/autophagy. Mechanistically, we uncovered that autophagy was induced upon loss of circHIPK3 via the MIR124-3p-STAT3-PRKAA/AMPKa axis in STK11 mutant lung cancer cell lines (A549 and H838). STAT3 abrogation as well as transfection with a MIR124-3p mimic, recapitulated the induction of autophagy. We also demonstrated antagonistic regulation on autophagy between circHIPK3 and linear HIPK3 (linHIPK3). We therefore propose that the ratio between circHIPK3 and linHIPK3 (C:L ratio) may reflect autophagy levels in cancer cells. We observed that a high C:L ratio (>0.49) was an indicator of poor survival, especially in advanced-stage NSCLC patients. These results support that circHIPK3 is a key autophagy regulator in a subset of lung cancer and has potential clinical use as a prognostic factor. The circular RNA HIPK3 (circHIPK3) functions as an oncogene and autophagy regulator may potential use as a prognostic marker and therapeutic target in lung cancer.Abbreviations 3-MA: 3-methyladenine; AMPK: AMP-activated protein kinase; ATG7: autophagy related 7; Baf-A: bafilomycin A1; BECN1: beclin 1; circHIPK3: circular HIPK3; CQ: chloroquine; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HIPK3: homeodomain interacting protein kinase 3; IL6R: interleukin 6 receptor; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; NSCLC: non-small cell lung cancer; RFP: red fluorescent protein; RPS6KB1/S6K: ribosomal protein S6 kinase B1; SQSTM1/p62: sequestosome 1; STAT3: signal transducer and activator of transcription 3; STK11: serine/threonine kinase 11.


Assuntos
Autofagia/fisiologia , Neoplasias Pulmonares/genética , MicroRNAs/genética , Proteínas Serina-Treonina Quinases/genética , RNA Circular/metabolismo , Transdução de Sinais , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
18.
Gastroenterology ; 135(2): 601-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18582468

RESUMO

BACKGROUND & AIMS: Activation of autoimmune pathways has been implicated as a contributing mechanism to the pathophysiology in some patients with chronic intestinal pseudoobstruction (CIP). In this study we tested the hypothesis that sera from a subpopulation of patients with CIP contain autoantibodies that activate autophagy via a Fas-dependent pathway in cultured human neuroblastoma SH-Sy5Y cells. METHODS: Twenty-five patients with established neurogenic CIP (20 women, 5 men; age range, 21-57 y) were investigated and circulating antineuronal antibodies to enteric neurons were found in 6 (24%) patients. The ability of antineuronal antibodies to induce autophagy was assessed using immunohistochemical, Western immunoblot, and molecular techniques. The presence of autophagosomes was monitored using a specific immunohistochemical marker, anti-microtubule-associated light chain immunoreactivity, and colocalization with mitochondrial- and Fas-activated death domain immunofluorescence using appropriate antibodies in cells exposed to sera from matched healthy controls and patients with neurogenic CIP. RESULTS: Exposure of SH-Sy5Y cells to sera from patients with CIP containing antineuronal antibodies revealed increased binding of autoimmune immunoglobulin (IgG class) to the surface of SH-Sy5Y cells and increased formation of autophagosomes showing colocalization with mitochondria and Fas-activated death domain compared with control sera. Pretreatment of sera with either protein L agarose beads or a soluble Fas receptor (extracellular domain) chimera prevented the stimulation of autophagy. CONCLUSIONS: We provide novel evidence that antineuronal antibodies may contribute to neuronal dysfunction observed in a subset of patients with neurogenic CIP via autoantibody-mediated activation of autophagy involving the Fas receptor complex.


Assuntos
Formação de Anticorpos , Autoanticorpos/sangue , Autofagia , Sistema Nervoso Entérico/imunologia , Pseudo-Obstrução Intestinal/imunologia , Proteínas do Tecido Nervoso/imunologia , Neurônios/imunologia , Receptor fas/metabolismo , Adulto , Western Blotting , Estudos de Casos e Controles , Linhagem Celular Tumoral , Doença Crônica , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/patologia , Sistema Nervoso Entérico/fisiopatologia , Proteína de Domínio de Morte Associada a Fas/metabolismo , Feminino , Humanos , Imunoglobulinas/metabolismo , Imuno-Histoquímica , Pseudo-Obstrução Intestinal/metabolismo , Pseudo-Obstrução Intestinal/patologia , Pseudo-Obstrução Intestinal/fisiopatologia , Masculino , Manometria , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Mitocôndrias/imunologia , Neurônios/metabolismo , Neurônios/patologia
19.
Aging (Albany NY) ; 11(13): 4587-4596, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31291201

RESUMO

Long non-coding RNAs (lncRNAs) have involved in human malignancies and played an important role in gene regulations. The dysregulation of lncRNA MIR22HG has been reported in several cancers. However, the role of MIR22HG in esophageal adenocarcinoma (EAC) is poorly understood. Loss of function approaches were used to investigate the biological role of MIR22HG in EAC cells. The effects of MIR22HG on cell proliferation were evaluated by WST-1 and colony formation assays. The effects of MIR22HG on cell migration and invasion were examined using transwell assays. QRT-PCR and Western blot were used to evaluate the mRNA and protein expression of related genes. In this study, abrogation of MIR22HG inhibited cell proliferation, colony formation, invasion and migration in EAC 3 cell lines (OE33, OE19 and FLO-1). Mechanistically, MIR22HG silencing decreased the expression of STAT3/c-Myc/p-FAK proteins and induced apoptosis in EAC cell lines. These results delineate a novel mechanism of MIR22HG in EAC, and may provide potential targets by developing lncRNA-based therapies for EAC.


Assuntos
Adenocarcinoma/genética , Proteínas de Ligação a DNA/metabolismo , Neoplasias Esofágicas/genética , Quinase 1 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Fator de Transcrição STAT3/metabolismo , Fatores de Transcrição/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , RNA Longo não Codificante/genética , Transdução de Sinais
20.
Aging (Albany NY) ; 11(9): 2812-2821, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31085800

RESUMO

Esophageal adenocarcinoma (EAC) is one of the leading causes of cancer-related death worldwide, and the molecular biology of this cancer remains poorly understood. Recent evidence indicates that long non-coding RNAs are dysregulated in a variety of cancers including EAC. In this study, siRNA mediated gene knockdown, Western blot, RT-PCR, as well as oncogenic function assay were performed. We found that the cell proliferation, colony formation, invasion and migration were decreased after LINC00857 knockdown in EAC cell lines. We also found that knockdown LINC00857 could induce apoptosis. Mechanistically, we found that the MET, STAT3, c-Myc and p-CREB proteins were decreased after LINC00857 knockdown. Our study suggests that LINC00857 may play an important oncogenic role in EAC via STAT3 and MET signaling.


Assuntos
Adenocarcinoma/metabolismo , Proliferação de Células/fisiologia , Neoplasias Esofágicas/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , RNA Longo não Codificante/metabolismo , Fator de Transcrição STAT3/metabolismo , Apoptose , Movimento Celular/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Longo não Codificante/genética , Fator de Transcrição STAT3/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa