RESUMO
Obesity is a major public health issue due to its association with type 2 diabetes, hypertension, and other cardiovascular risks. The BBSome, a complex of eight conserved Bardet-Biedl syndrome (BBS) proteins, has emerged as a key regulator of energy and glucose homeostasis as well as cardiovascular function. However, the importance of adipocyte BBSome in controlling these physiological processes is not clear. Here, we show that adipocyte-specific constitutive disruption of the BBSome through selective deletion of the Bbs1 gene adiponectin (AdipoCre/Bbs1fl/fl mice) does not affect body weight under normal chow or high-fat and high-sucrose diet (HFHSD). However, constitutive BBSome deficiency caused impairment in glucose tolerance and insulin sensitivity. Similar phenotypes were observed after inducible adipocyte-specific disruption of the BBSome (AdipoCreERT2/Bbs1fl/fl mice). Interestingly, a significant increase in renal sympathetic nerve activity, measured using multifiber recording in the conscious state, was observed in AdipoCre/Bbs1fl/fl mice on both chow and HFHSD. A significant increase in tail-cuff arterial pressure was also observed in chow-fed AdipoCre/Bbs1fl/fl mice, but this was not reproduced when arterial pressure was measured by radiotelemetry. Moreover, AdipoCre/Bbs1fl/fl mice had no significant alterations in vascular reactivity. On the other hand, AdipoCre/Bbs1fl/fl mice displayed impaired baroreceptor reflex sensitivity when fed HFHSD, but not on normal chow. Taken together, these data highlight the relevance of the adipocyte BBSome for the regulation of glucose homeostasis and sympathetic traffic. The BBSome also contributes to baroreflex sensitivity under HFHSD, but not normal chow.NEW & NOTEWORTHY The current study show how genetic manipulation of fat cells impacts various functions of the body including sensitivity to the hormone insulin.
Assuntos
Adipócitos , Adiponectina , Animais , Adipócitos/metabolismo , Adiponectina/metabolismo , Adiponectina/genética , Camundongos , Resistência à Insulina , Masculino , Obesidade/fisiopatologia , Obesidade/metabolismo , Obesidade/genética , Camundongos Knockout , Sistema Nervoso Simpático/fisiopatologia , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Doenças do Sistema Nervoso Autônomo/fisiopatologia , Doenças do Sistema Nervoso Autônomo/genética , Doenças do Sistema Nervoso Autônomo/metabolismo , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/fisiopatologia , Síndrome de Bardet-Biedl/metabolismo , Proteínas Associadas aos MicrotúbulosRESUMO
The BBSome is a protein complex composed of eight Bardet-Biedl syndrome (BBS) proteins including BBS1. Humans and mice lacking a functional BBSome display obesity and type 2 diabetes, highlighting the importance of this protein complex for metabolic regulation. However, the contribution of the BBSome in insulin-sensitive tissues such as skeletal muscle and liver to metabolic regulation is ill-defined. Here, we show that disruption of the BBSome through Bbs1 gene deletion in the skeletal muscle had no effect on body weight or glucose handling, but improved insulin sensitivity of female mice without changing insulin receptor signaling. Interestingly, when fed an obesogenic diet, male mice lacking the Bbs1 gene in skeletal muscle exhibited heightened insulin sensitivity despite the comparable weight gain and glucose tolerance relative to controls. On the other hand, normal chow-fed mice missing the Bbs1 gene in hepatocytes displayed increased body weight, as well as impaired glucose handling and insulin sensitivity. This was associated with attenuated insulin signaling in liver and hepatocytes, but not skeletal muscle and white adipose tissue. Moreover, hepatocytes lacking the Bbs1 gene displayed significant reduction in plasma membrane insulin receptor levels due to the mitochondrial dysfunction evoked by loss of the BBSome. Together, these findings demonstrate that myocyte BBSome is minimally involved in metabolic regulation, whereas the hepatic BBSome plays a critical role in the control of energy homeostasis and insulin sensitivity through its requirement for insulin receptor trafficking.NEW & NOTEWORTHY The ongoing epidemic of obesity and associated illnesses highlights the need to understand the biological processes that regulate energy balance. Here, we identified an important role for a protein complex called BBSome in the control of hepatic function. We show that the liver BBSome is necessary to maintain body weight and blood glucose levels due to its requirements to generate energy and detect insulin, a hormone that is essential for metabolic regulation.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Insulinas , Humanos , Camundongos , Masculino , Feminino , Animais , Proteínas Associadas aos Microtúbulos/metabolismo , Receptor de Insulina , Resistência à Insulina/genética , Diabetes Mellitus Tipo 2/genética , Obesidade/genética , Obesidade/metabolismo , Peso Corporal/genética , Fígado/metabolismo , Glucose , Músculo Esquelético/metabolismoRESUMO
Bsardet Biedl syndrome (BBS) is a genetic condition associated with various clinical features including cutaneous disorders and certain autoimmune and inflammatory diseases pointing to a potential role of BBS proteins in the regulation of immune function. BBS1 protein, which is a key component of the BBSome, a protein complex involved in the regulation of cilia function and other cellular processes, has been implicated in the immune synapse assembly by promoting the centrosome polarization to the antigen-presenting cells. Here, we assessed the effect of disrupting the BBSome, through Bbs1 gene deletion, in T cells. Interestingly, mice lacking the Bbs1 gene specifically in T cells (T-BBS1-/-) displayed normal body weight, adiposity, and glucose handling, but have smaller spleens. However, T-BBS1-/- mice had no change in the proportion and absolute number of B cells and T cells in the spleen and lymph nodes. There was also no alteration in the CD4/CD8 lineage commitment or survival in the thymus of T-BBS1-/- mice. On the other hand, T-BBS1-/- mice treated with Imiquimod dermally exhibited a significantly higher percentage of CD3-positive splenocytes that was due to CD4 but not CD8 T cell predominance. Notably, we found that T-BBS1-/- mice had significantly decreased wound closure, an effect that was more pronounced in males indicating that the BBSome plays an important role in T cell-mediated skin repair. Together, these findings implicate the BBSome in the regulation of selective functions of T cells.
Assuntos
Cílios , Proteínas Associadas aos Microtúbulos , Animais , Masculino , Camundongos , Adiposidade , Cílios/metabolismo , Cílios/patologia , Imunidade/genética , Proteínas Associadas aos Microtúbulos/genética , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismoRESUMO
The mechanistic target of rapamycin complex 1 (mTORC1) signaling complex is emerging as a critical regulator of cardiovascular function with alterations in this pathway implicated in cardiovascular diseases. In this study, we used animal models and human tissues to examine the role of vascular mTORC1 signaling in the endothelial dysfunction associated with obesity. In mice, obesity induced by high-fat/high-sucrose diet feeding for â¼2 mo resulted in aortic endothelial dysfunction without appreciable changes in vascular mTORC1 signaling. On the other hand, chronic high-fat diet feeding (45% or 60% kcal: â¼9 mo) in mice resulted in endothelial dysfunction associated with elevated vascular mTORC1 signaling. Endothelial cells and visceral adipose vessels isolated from obese humans display a trend toward elevated mTORC1 signaling. Surprisingly, genetic disruption of endothelial mTORC1 signaling through constitutive or tamoxifen inducible deletion of endothelial Raptor (critical subunit of mTORC1) did not prevent or rescue the endothelial dysfunction associated with high-fat diet feeding in mice. Endothelial mTORC1 deficiency also failed to reverse the endothelial dysfunction evoked by a high-fat/high-sucrose diet in mice. Taken together, these data show increased vascular mTORC1 signaling in obesity, but this vascular mTORC1 activation appears not to be required for the development of endothelial impairment in obesity.
Assuntos
Endotélio Vascular/enzimologia , Alvo Mecanístico do Complexo 1 de Rapamicina/deficiência , Obesidade/prevenção & controle , Gordura Subcutânea/irrigação sanguínea , Vasodilatação , Animais , Aorta Torácica/enzimologia , Aorta Torácica/fisiopatologia , Estudos de Casos e Controles , Dieta Hiperlipídica , Sacarose Alimentar , Modelos Animais de Doenças , Endotélio Vascular/fisiopatologia , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Artérias Mesentéricas/enzimologia , Artérias Mesentéricas/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/enzimologia , Obesidade/genética , Obesidade/fisiopatologia , Proteína Regulatória Associada a mTOR/deficiência , Proteína Regulatória Associada a mTOR/genética , Transdução de SinaisRESUMO
Cell motility and migration play critical roles in various physiological processes and disease states. Here, we show that the BBBsome, a macromolecule composed of eight Bardet-Biedl syndrome (BBS) proteins including BBS1, is a critical determinant of cell migration and wound healing. Fibroblast cells derived from mice or humans harboring a homozygous missense mutation (BBS1M390R/M390R) that disrupt the BBSome exhibit defects in migration and wound healing. Furthermore, we demonstrate that BBS1M390R/M390R mice have significantly delayed wound closure. In line with this, we provide data suggesting that BBS1M390R/M390R fibroblasts have impaired platelet-derived growth factor-AA (PDGF) receptor-α signaling, a key regulator of directional cell migration acting as a chemoattractant during postnatal migration responses such as wound healing. In addition, we show that BBS1M390R/M390R fibroblasts have upregulated RhoA expression and activity. The relevance of RhoA upregulation is demonstrated by the ability of RhoA-kinase inhibitor Y27632 to partially rescue the migration defect of BBS1M390R/M390R fibroblasts cells. We also show that accumulation of RhoA protein in BBS1M390R/M390R fibroblasts cells is associated with reduction and inactivation of the ubiquitin ligase Cullin-3. Consistent with this, Cullin-3 inhibition with MLN4924 is sufficient to reduce migration of normal fibroblasts. These data implicate the BBSome in cell motility and tissue repair through a mechanism that involves PDGF receptor signaling and Cullin-3-mediated control of RhoA.
Assuntos
Síndrome de Bardet-Biedl , Movimento Celular/fisiologia , Proteínas Culina/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Transdução de Sinais/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia , Animais , Síndrome de Bardet-Biedl/genética , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Proteínas Culina/antagonistas & inibidores , Ciclopentanos/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Técnicas de Introdução de Genes/métodos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pirimidinas/farmacologia , Proteína rhoA de Ligação ao GTP/antagonistas & inibidoresRESUMO
Bardet-Biedl syndrome (BBS) is a highly pleiotropic autosomal recessive disorder associated with a wide range of phenotypes including obesity. However, the underlying mechanism remains unclear. Here, we show that neuronal BBSome is a critical determinant of energy balance through its role in the regulation of the trafficking of the long signaling form of the leptin receptor (LRb). Targeted disruption of the BBSome by deleting the Bbs1 gene from the nervous system causes obesity in mice, and this phenotype is reproduced by ablation of the Bbs1 gene selectively in the LRb-expressing cells, but not from adipocytes. Obesity developed as a consequence of both increased food intake and decreased energy expenditure in mice lacking the Bbs1 gene in LRb-expressing cells. Strikingly, the well-known role of BBS proteins in the regulation of ciliary formation and function is unlikely to account for the obesogenic effect of BBS1 loss as disruption of the intraflagellar transport (IFT) machinery required for ciliogenesis by deleting the Ift88 gene in LRb-expressing cells caused a marginal increase in body weight and adiposity. Instead, we demonstrate that silencing BBS proteins, but not IFT88, impair the trafficking of the LRb to the plasma membrane leading to central leptin resistance in a manner independent of obesity. Our data also demonstrate that postnatal deletion of the Bbs1 gene in the mediobasal hypothalamus can cause obesity in mice, arguing against an early neurodevelopmental origin of obesity in BBS. Our results depict a novel mechanism underlying energy imbalance and obesity in BBS with potential implications in common forms of human obesity.
Assuntos
Síndrome de Bardet-Biedl/metabolismo , Membrana Celular/metabolismo , Receptores para Leptina/metabolismo , Animais , Síndrome de Bardet-Biedl/genética , Membrana Celular/genética , Metabolismo Energético/fisiologia , Feminino , Hipotálamo/fisiologia , Camundongos Mutantes , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Complexos Multiproteicos/metabolismo , Obesidade/genética , Obesidade/metabolismo , Transporte Proteico , Receptores para Leptina/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismoRESUMO
Insulin and its receptor are critical for the regulation of metabolic functions, but the mechanisms underlying insulin receptor (IR) trafficking to the plasma membrane are not well understood. Here, we show that Bardet Biedl Syndrome (BBS) proteins are necessary for IR localization to the cell surface. We demonstrate that the IR interacts physically with BBS proteins, and reducing the expression of BBS proteins perturbs IR expression in the cell surface. We show the consequence of disrupting BBS proteins for whole body insulin action and glucose metabolism using mice lacking different BBS genes. These findings demonstrate the importance of BBS proteins in underlying IR cell surface expression. Our data identify defects in trafficking and localization of the IR as a novel mechanism accounting for the insulin resistance commonly associated with human BBS. This is supported by the reduced surface expression of the IR in fibroblasts derived from patients bearing the M390R mutation in the BBS1 gene.
Assuntos
Síndrome de Bardet-Biedl/genética , Proteínas Associadas aos Microtúbulos/genética , Receptor de Insulina/metabolismo , Animais , Síndrome de Bardet-Biedl/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Células HEK293 , Humanos , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Ligação Proteica , Transporte ProteicoRESUMO
Peroxisome proliferator-activated receptor-γ (PPARγ), a master regulator of adipogenesis, was recently shown to affect energy homeostasis through its actions in the brain. Deletion of PPARγ in mouse brain, and specifically in the pro-opiomelanocortin (POMC) neurons, results in resistance to diet-induced obesity. To study the mechanisms by which PPARγ in POMC neurons controls energy balance, we constructed a Cre-recombinase-dependent conditionally activatable transgene expressing either wild-type (WT) or dominant-negative (P467L) PPARγ and the tdTomato reporter. Inducible expression of both forms of PPARγ was validated in cells in culture, in liver of mice infected with an adenovirus expressing Cre-recombinase (AdCre), and in the brain of mice expressing Cre-recombinase either in all neurons (NES(Cre)/PPARγ-P467L) or selectively in POMC neurons (POMC(Cre)/PPARγ-P467L). Whereas POMC(Cre)/PPARγ-P467L mice exhibited a normal pattern of weight gain when fed 60% high-fat diet, they exhibited increased weight gain and fat mass accumulation in response to a 10% fat isocaloric-matched control diet. POMC(Cre)/PPARγ-P467L mice were leptin sensitive on control diet but became leptin resistant when fed 60% high-fat diet. There was no difference in body weight between POMC(Cre)/PPARγ-WT mice and controls in response to 60% high-fat diet. However, POMC(Cre)/PPARγ-WT, but not POMC(Cre)/PPARγ-P467L, mice increased body weight in response to rosiglitazone, a PPARγ agonist. These observations support the concept that alterations in PPARγ-driven mechanisms in POMC neurons can play a role in the regulation of metabolic homeostasis under certain dietary conditions.
Assuntos
Metabolismo Energético/fisiologia , Homeostase/fisiologia , Neurônios/metabolismo , PPAR gama/metabolismo , Pró-Opiomelanocortina/metabolismo , Células 3T3 , Adipogenia/efeitos dos fármacos , Adipogenia/fisiologia , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiologia , Linhagem Celular , Dieta Hiperlipídica/métodos , Metabolismo Energético/efeitos dos fármacos , Feminino , Células HEK293 , Homeostase/efeitos dos fármacos , Humanos , Leptina/metabolismo , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/fisiopatologia , PPAR gama/agonistas , Rosiglitazona , Tiazolidinedionas/farmacologia , Aumento de Peso/efeitos dos fármacos , Aumento de Peso/fisiologiaRESUMO
We hypothesized that the mitochondrial-targeted antioxidant, mitoquinone (mitoQ), known to have mitochondrial uncoupling properties, might prevent the development of obesity and mitigate liver dysfunction by increasing energy expenditure, as opposed to reducing energy intake. We administered mitoQ or vehicle (ethanol) to obesity-prone C57BL/6 mice fed high-fat (HF) or normal-fat (NF) diets. MitoQ (500 µM) or vehicle (ethanol) was added to the drinking water for 28 weeks. MitoQ significantly reduced total body mass and fat mass in the HF-fed mice but had no effect on these parameters in NF mice. Food intake was reduced by mitoQ in the HF-fed but not in the NF-fed mice. Average daily water intake was reduced by mitoQ in both the NF- and HF-fed mice. Hypothalamic expression of neuropeptide Y, agouti-related peptide, and the long form of the leptin receptor were reduced in the HF but not in the NF mice. Hepatic total fat and triglyceride content did not differ between the mitoQ-treated and control HF-fed mice. However, mitoQ markedly reduced hepatic lipid hydroperoxides and reduced circulating alanine aminotransferase, a marker of liver function. MitoQ did not alter whole-body oxygen consumption or liver mitochondrial oxygen utilization, membrane potential, ATP production, or production of reactive oxygen species. In summary, mitoQ added to drinking water mitigated the development of obesity. Contrary to our hypothesis, the mechanism involved decreased energy intake likely mediated at the hypothalamic level. MitoQ also ameliorated HF-induced liver dysfunction by virtue of its antioxidant properties without altering liver fat or mitochondrial bioenergetics.
Assuntos
Dieta Hiperlipídica/efeitos adversos , Hepatopatias/prevenção & controle , Mitocôndrias Hepáticas/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Ubiquinona/análogos & derivados , Aumento de Peso/efeitos dos fármacos , Animais , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/efeitos adversos , Hepatopatias/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/enzimologia , Compostos Organofosforados/uso terapêutico , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico , Aumento de Peso/fisiologiaRESUMO
The BBSome, a complex of several Bardet-Biedl syndrome (BBS) proteins including BBS1, has emerged as a critical regulator of energy homeostasis. Although the BBSome is best known for its involvement in cilia trafficking, through a process that involve BBS3, it also regulates the localization of cell membrane receptors underlying metabolic regulation. Here, we show that inducible Bbs1 gene deletion selectively in proopiomelanocortin (POMC) neurons cause a gradual increase in body weight, which was associated with higher fat mass. In contrast, inducible deletion of Bbs3 gene in POMC neurons failed to affect body weight and adiposity. Interestingly, loss of BBS1 in POMC neurons led to glucose intolerance and insulin insensitivity, whereas BBS3 deficiency in these neurons is associated with slight impairment in glucose handling, but normal insulin sensitivity. BBS1 deficiency altered the plasma membrane localization of serotonin 5-HT2C receptor (5-HT2CR) and ciliary trafficking of neuropeptide Y2 receptor (NPY2R).In contrast, BBS3 deficiency, which disrupted the ciliary localization of the BBSome, did not interfere with plasma membrane expression of 5-HT2CR, but reduced the trafficking of NPY2R to cilia. We also show that deficiency in BBS1, but not BBS3, alters mitochondria dynamics and decreased total and phosphorylated levels of dynamin-like protein 1 (DRP1) protein. Importantly, rescuing DRP1 activity restored mitochondria dynamics and localization of 5-HT2CR and NPY2R in BBS1-deficient cells. The contrasting effects on energy and glucose homeostasis evoked by POMC neuron deletion of BBS1 versus BBS3 indicate that BBSome regulation of metabolism is not related to its ciliary function in these neurons.
Assuntos
Síndrome de Bardet-Biedl , Peso Corporal , Cílios , Pró-Opiomelanocortina , Humanos , Cílios/genética , Glucose/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Neurônios/metabolismo , Pró-Opiomelanocortina/genética , Transporte Proteico/genética , Serotonina/metabolismo , AnimaisRESUMO
Isolation of rodents throughout adolescence is known to induce many behavioral abnormalities which resemble neuropsychiatric disorders. Separately, this paradigm has also been shown to induce long-term metabolic changes consistent with a pre-diabetic state. Here, we investigate changes in central serotonin (5-HT) and glucagon-like peptide 1 (GLP-1) neurobiology that dually accompany behavioral and metabolic outcomes following social isolation stress throughout adolescence. We find that adolescent-isolation mice exhibit elevated blood glucose levels, impaired peripheral insulin signaling, altered pancreatic function, and fattier body composition without changes in bodyweight. These mice further exhibited disruptions in sleep and enhanced nociception. Using bulk and spatial transcriptomic techniques, we observe broad changes in neural 5-HT, GLP-1, and appetitive circuits. We find 5-HT neurons of adolescent-isolation mice to be more excitable, transcribe fewer copies of Glp1r (mRNA; GLP-1 receptor), and demonstrate resistance to the inhibitory effects of the GLP-1R agonist semaglutide on action potential thresholds. Surprisingly, we find that administration of semaglutide, commonly prescribed to treat metabolic syndrome, induced deficits in social interaction in group-housed mice and rescued social deficits in isolated mice. Overall, we find that central 5-HT circuitry may simultaneously influence mental well-being and metabolic health in this model, via interactions with GLP-1 and proopiomelanocortin circuitry.
Assuntos
Modelos Animais de Doenças , Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Serotonina , Isolamento Social , Animais , Camundongos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Masculino , Serotonina/metabolismo , Transtornos Mentais/metabolismo , Transtornos Mentais/tratamento farmacológico , Camundongos Endogâmicos C57BL , Doenças Metabólicas/metabolismo , Doenças Metabólicas/fisiopatologia , Glicemia/metabolismo , Glicemia/efeitos dos fármacosRESUMO
Background: The outer mitochondrial Rho GTPase 1, MIRO1, mediates mitochondrial motility within cells, but implications for vascular smooth muscle cell (VSMC) physiology and its roles invascular diseases, such as neointima formation following vascular injury are widely unknown. Methods: An in vivo model of selective Miro1 deletion in VSMCs was generated, and the animals were subjected to carotid artery ligation. The molecular mechanisms relevant to VSMC proliferation were then explored in explanted VSMCs by imaging mitochondrial positioning and cristae structure and assessing the effects on ATP production, metabolic function and interactions with components of the electron transport chain (ETC). Results: MIRO1 was robustly expressed in VSMCs within human atherosclerotic plaques and promoted VSMC proliferation and neointima formation in mice by blocking cell-cycle progression at G1/S, mitochondrial positioning, and PDGF-induced ATP production and respiration; overexpression of a MIRO1 mutant lacking the EF hands that are required for mitochondrial mobility did not fully rescue these effects. At the ultrastructural level, Miro1 deletion distorted the mitochondrial cristae and reduced the formation of super complexes and the activity of ETC complex I. Conclusions: Mitochondrial motility is essential for VSMC proliferation and relies on MIRO1. The EF-hands of MIRO1 regulate the intracellular positioning of mitochondria. Additionally, the absence of MIRO1 leads to distorted mitochondrial cristae and reduced ATP generation. Our findings demonstrate that motility is linked to mitochondrial ATP production. We elucidated two unrecognized mechanisms through which MIRO1 influences cell proliferation by modulating mitochondria: first, by managing mitochondrial placement via Ca2+-dependent EF hands, and second, by affecting cristae structure and ATP synthesis.
RESUMO
RATIONALE: The hypothalamic arcuate nucleus (ARC) is considered a major site for leptin signaling that regulates several physiological processes. OBJECTIVE: To test the hypothesis that leptin receptor in the ARC is required to mediate leptin-induced sympathetic activation. METHODS AND RESULTS: First, we used the ROSA Cre-reporter mice to establish the feasibility of driving Cre expression in the ARC in a controlled manner with bilateral microinjection of adenovirus-expressing Cre-recombinase (Ad-Cre). Ad-Cre microinjection into the ARC of ObR(flox/flox) mice robustly reduced ObR expression and leptin-induced Stat3 activation in the ARC but not in the adjacent nuclei, confirming the efficacy and selectivity of the ARC deletion of ObR. Critically, deletion of ObR in the ARC attenuated brown adipose tissue and renal sympathetic nerve responses to leptin. We also examined whether ObR in the ARC is required for the preserved leptin-induced increase in renal sympathetic activity in dietary obesity. We found that deletion of ARC ObR abrogated leptin-induced increases in renal sympathetic discharge and resolved arterial pressure elevation in diet-induced obese ObR(flox/flox) mice. CONCLUSIONS: These data demonstrate a critical role for ObR in the ARC in mediating the sympathetic nerve responses to leptin and in the adverse sympathoexcitatory effects of leptin in obesity.
Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Deleção de Genes , Leptina/farmacologia , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos , Adenoviridae/genética , Animais , Modelos Animais de Doenças , Proteínas de Fluorescência Verde , Homozigoto , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/fisiopatologia , Sistema Nervoso Simpático/fisiopatologiaRESUMO
In 2020, stay-at-home orders were implemented to stem the spread of SARS-CoV-2 worldwide. Social isolation can be particularly harmful to children and adolescents-during the pandemic, the prevalence of obesity increased by â¼37% in persons aged 2-19. Obesity is often comorbid with type 2 diabetes, which was not assessed in this human pandemic cohort. Here, we investigated whether male mice isolated throughout adolescence develop type 2 diabetes in a manner consistent with human obesity-induced diabetes, and explored neural changes that may underlie such an interaction. We find that isolating C57BL/6J mice throughout adolescence is sufficient to induce type 2 diabetes. We observed fasted hyperglycemia, diminished glucose clearance in response to an insulin tolerance test, decreased insulin signaling in skeletal muscle, decreased insulin staining of pancreatic islets, increased nociception, and diminished plasma cortisol levels compared to group-housed control mice. Using Promethion metabolic phenotyping chambers, we observed dysregulation of sleep and eating behaviors, as well as a time-dependent shift in respiratory exchange ratio of the adolescent-isolation mice. We profiled changes in neural gene transcription from several brain areas and found that a neural circuit between serotonin-producing and GLP-1-producing neurons is affected by this isolation paradigm. Overall, spatial transcription data suggest decreased serotonin neuron activity (via decreased GLP-1-mediated excitation) and increased GLP-1 neuron activity (via decreased serotonin-mediated inhibition). This circuit may represent an intersectional target to further investigate the relationship between social isolation and type 2 diabetes, as well as a pharmacologically-relevant circuit to explore the effects of serotonin and GLP-1 receptor agonists. Article Highlights: Isolating C57BL/6J mice throughout adolescence is sufficient to induce type 2 diabetes, presenting with fasted hyperglycemia.Adolescent-isolation mice have deficits in insulin responsiveness, impaired peripheral insulin signaling, and decreased pancreatic insulin production.Transcriptional changes across the brain include the endocannabinoid, serotonin, and GLP-1 neurotransmitters and associated receptors. The neural serotonin/GLP-1 circuit may represent an intersectional target to further investigate the relationship between social isolation and type 2 diabetes. Serotonin-producing neurons of adolescent-isolation mice produce fewer transcripts for the GLP-1 receptor, and GLP-1 neurons produce fewer transcripts for the 5-HT 1A serotonin receptor.
RESUMO
OBJECTIVE: The essential role of mitochondria in regulation of metabolic function and other physiological processes has garnered enormous interest in understanding the mechanisms controlling the function of this organelle. We assessed the role of the BBSome, a protein complex composed of eight Bardet-Biedl syndrome (BBS) proteins, in the control of mitochondria dynamic and function. METHODS: We used a multidisciplinary approach that include CRISPR/Cas9 technology-mediated generation of a stable Bbs1 gene knockout hypothalamic N39 neuronal cell line. We also analyzed the phenotype of BBSome deficient mice in presence or absence of the gene encoding A-kinase anchoring protein 1 (AKAP1). RESULTS: Our data show that the BBSome play an important role in the regulation of mitochondria dynamics and function. Disruption of the BBSome cause mitochondria hyperfusion in cell lines, fibroblasts derived from patients as well as in hypothalamic neurons and brown adipocytes of mice. The morphological changes in mitochondria translate into functional abnormalities as indicated by the reduced oxygen consumption rate and altered mitochondrial distribution and calcium handling. Mechanistically, we demonstrate that the BBSome modulates the activity of dynamin-like protein 1 (DRP1), a key regulator of mitochondrial fission, by regulating its phosphorylation and translocation to the mitochondria. Notably, rescuing the decrease in DRP1 activity through deletion of one copy of the gene encoding AKAP1 was effective to normalize the defects in mitochondrial morphology and activity induced by BBSome deficiency. Importantly, this was associated with improvement in several of the phenotypes caused by loss of the BBSome such as the neuroanatomical abnormalities, metabolic alterations and obesity highlighting the importance of mitochondria defects in the pathophysiology of BBS. CONCLUSIONS: These findings demonstrate a critical role of the BBSome in the modulation of mitochondria function and point to mitochondrial defects as a key disease mechanism in BBS.
Assuntos
Síndrome de Bardet-Biedl , Camundongos , Animais , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Obesidade/metabolismo , Proteínas , Linhagem Celular , Mitocôndrias/metabolismoRESUMO
The molecular clock machinery regulates several homeostatic rhythms, including glucose metabolism. We previously demonstrated that Roux-en-Y gastric bypass (RYGB) has a weight-independent effect on glucose homeostasis and transiently reduces food intake. In this study we investigate the effects of RYGB on diurnal eating behavior as well as on the molecular clock and this clock's requirement for the metabolic effects of this bariatric procedure in obese mice. We find that RYGB reversed the high-fat diet-induced disruption in diurnal eating pattern during the early postsurgery phase of food reduction. Dark-cycle pair-feeding experiments improved glucose tolerance to the level of bypass-operated animals during the physiologic fasting phase (Zeitgeber time 2, ZT2) but not the feeding phase (ZT14). Using a clock gene reporter mouse model (mPer2Luc), we reveal that RYGB induced a liver-specific phase shift in peripheral clock oscillation with no changes to the central clock activity within the suprachiasmatic nucleus. In addition, we show that weight loss effects were attenuated in obese ClockΔ19 mutant mice after RYGB that also failed to improve glucose metabolism after surgery, specifically hepatic glucose production. We conclude that RYGB reprograms the peripheral clock within the liver early after surgery to alter diurnal eating behavior and regulate hepatic glucose flux.
Assuntos
Derivação Gástrica , Resistência à Insulina , Camundongos , Animais , Glucose/metabolismo , Derivação Gástrica/métodos , Glicemia/metabolismo , Resistência à Insulina/fisiologia , Comportamento Alimentar , Fígado/metabolismoRESUMO
OBJECTIVE: Bone morphogenetic protein 8B (BMP8B) plays a major role in the regulation of energy homeostasis by modulating brown adipose tissue (BAT) thermogenesis and white adipose tissue (WAT) browning. Here, we investigated whether BMP8B's role in metabolism is affected by obesity and the possible molecular mechanisms underlying that action. METHODS: Central treatments with BMP8B were performed in rats fed a standard (SD) and high-fat diet (HFD), as well as in genetically modified mice. Energy balance studies, infrared thermographic analysis of BAT and molecular analysis of the hypothalamus, BAT and WAT were carried out. RESULTS: We show for the first time that HFD-induced obesity elicits resistance to the central actions of BMP8B on energy balance. This obesity-induced BMP8B resistance is explained by i) lack of effects on AMP-activated protein kinase (AMPK) signaling, ii) decreased BMP receptors signaling and iii) reduced expression of Bardet-Biedl Syndrome 1 (BBS1) protein, a key component of the protein complex BBSome in the ventromedial nucleus of the hypothalamus (VMH). The possible mechanistic involvement of BBS1 in this process is demonstrated by lack of a central response to BMP8B in mice carrying a single missense disease-causing mutation in the Bbs1 gene. CONCLUSIONS: Overall, our data uncover a new mechanism of central resistance to hormonal action that may be of relevance in the pathophysiology of obesity.
Assuntos
Tecido Adiposo Marrom , Proteínas Morfogenéticas Ósseas , Termogênese , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Camundongos , Obesidade/metabolismo , Ratos , Termogênese/fisiologiaRESUMO
Bardet-Biedl syndrome (BBS) is a rare hereditary autosomal recessive disease associated with several features including obesity, hypertension, and renal abnormalities. The underlying mechanisms of renal defects associated with BBS remain poorly defined. We examined the histological, molecular, and functional renal changes in BBS mouse models that have features of the human disorder. Interestingly, obese hypertensive Bbs4(-/-) mice exhibited inflammatory infiltration and renal cysts, whereas the obese normotensive Bbs2(-/-) mice had only minor inflammatory infiltration. Accordingly, the expression level of inducible nitric oxide synthase was elevated in the kidney of both BBS mice with a more marked increase in Bbs4(-/-) mice. In contrast, endothelial nitric oxide synthase expression was decreased in Bbs4(-/-), but not Bbs2(-/-), mice. Similarly, the expression levels of transient receptor potential vanilloid 1 and 4 channels as well as ß- and γ-subunits of epithelial Na channel were significantly reduced only in the kidney of Bbs4(-/-) mice. Metabolic studies revealed changes in urine output and urinary concentrations of creatinine, blood urea nitrogen, sodium, and potassium with a more pronounced effect in Bbs4(-/-) mice. Finally, we found that calorie restriction which prevented obesity in BBS mice reversed the morphological and molecular changes found in Bbs2(-/-) and Bbs4(-/-) mice, indicating the kidney abnormalities associated with BBS are obesity related. These findings extend our understanding of the function of BBS proteins and emphasize the importance of these proteins in renal physiology.