Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Sensors (Basel) ; 22(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36298110

RESUMO

In this paper, a novel embedded helix dielectric rod antenna is presented for high gain radiation with circular polarization (CP) and low side lobe levels for IoT Applications. Different from the conventional dielectric rod antennas, this proposed antenna is an integrated structure that combines the advantages of the helix and dielectric rod antennas. The presented antenna mainly consists of three parts: a tapered helix as primary feeding for CP, a dielectric rod with printed loops embedded for higher directivity, and a dielectric rod end for improving the gain further. After studying and analyzing the working principles of each part, an optimum design operating at 8-9.7 GHz is carried out as an example. A prototype is also fabricated and tested. The measured results show that the prototype can provide 18.41 dB maximum gain within the length of 7.7 λ. The side lobe level is below -20 dB, and the axial ratio is better than 1.14 dB in the whole frequency band. Compared with the traditional helix antenna and dielectric rod antenna with the same electric length, the presented antenna has a higher gain with a lower side lobe level and with good polarization purity.


Assuntos
Eletricidade , Tecnologia sem Fio , Desenho de Equipamento , Refração Ocular
2.
Phys Chem Chem Phys ; 20(38): 24535-24538, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30247495

RESUMO

By investigating the aqueous solution properties of several hydrate guests with molecular simulations, we find that with increasing guest concentration, the guest's hydration shell becomes more ordered and the system entropy decreases. A common critical value of the self-diffusion coefficient of different guest molecules is identified, below which hydrates will nucleate very readily.

3.
J Chem Phys ; 148(20): 204703, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29865836

RESUMO

We calculated methane transport through cylindrical graphite nanopores in cyclical steady-state flows using non-equilibrium molecular dynamics simulations. First, two typical gas reservoir configurations were evaluated: open (OS) and closed (CS) systems in which pores connect to the gas reservoir without/with a graphite wall parallel to the gas flow. We found that the OS configuration, which is commonly used to study nanoflows, exhibited obvious size effects. Smaller gas reservoir cross-sectional areas were associated with faster gas flows. Because Knudsen diffusion and slip flow in pores are interrupted in a gas reservoir that does not have walls as constraints, OSs cannot be relied upon in cyclical nanoflow simulations. Although CSs eliminated size effects, they introduced surface roughness effects that stem from the junction surface between the gas reservoir and the pore. To obtain a convergent nanoflow, the length of a side of the gas reservoir cross-section should be at least 2 nm larger than the pore diameter. Second, we obtained methane flux data for various pore radii (0.5-2.5 nm) in CSs and found that they could be described accurately using the Javadpour formula. This is the first direct molecular simulation evidence to validate this formula. Finally, the radial density and flow-velocity distributions of methane in CS pores were analyzed in detail. We tested pores with a radius between 0.5 nm and 2.5 nm and determined that the maximum ratio (∼34%) of slip flow to overall flow occurred in the pore with a radius of 1.25 nm. This study will aid in the design of gas reservoir configurations for nanoflow simulations and is helpful in understanding shale gas nanoflows.

4.
Curr Microbiol ; 75(5): 565-573, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29243069

RESUMO

Adenosine deaminase (ADA) is an enzyme widely distributed from bacteria to humans. ADA is known as a potential therapeutic target for the treatment of lymphoproliferative disorders and cancer. Endophytes are endosymbionts, often bacteria or fungi, which live within plant tissues and internal organs or intercellular space. Endophytes have a broad variety of bioactive metabolites that are used for the identification of novel natural compounds. Here, 54 morphologically distinct endophyte strains were isolated from six plants such as Peganum harmala Linn., Rheum officinale Baill., Gentiana macrophylla Pall., Radix stephaniae tetrandrae, Myrrha, and Equisetum hyemale Linn. The isolated strains were used for the search of ADA inhibitors that resulted in the identification of the strain with the highest inhibition activity, Aspergillus niger sp. Four compounds were isolated from this strain using three-step chromatography procedure, and compound 2 was determined as the compound with the highest inhibition activity of ADA. Based on the results of 1H and 13C NMR spectroscopies, compound 2 was identified as 3-(4-nitrophenyl)-5-phenyl isoxazole. We showed that compound 2 was a new uncompetitive inhibitor of ADA with high cytotoxic effect on HepG2 and SMCC-7721 cells (the IC50 values were 0.347 and 0.380 mM, respectively). These results suggest that endophyte strains serve as promising sources for the identification of ADA inhibitors, and compound 2 could be an effective drug in the cancer treatment.


Assuntos
Inibidores de Adenosina Desaminase/química , Aspergillus niger/química , Endófitos/química , Plantas/microbiologia , Adenosina Desaminase/química , Adenosina Desaminase/metabolismo , Inibidores de Adenosina Desaminase/metabolismo , Aspergillus niger/genética , Aspergillus niger/isolamento & purificação , Aspergillus niger/metabolismo , Linhagem Celular , Endófitos/genética , Endófitos/isolamento & purificação , Endófitos/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular
5.
Int J Mol Sci ; 19(4)2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29596349

RESUMO

The NAM, ATAF1/2, and CUC2 (NAC) transcription factors form a large plant-specific gene family, which is involved in the regulation of tissue development in response to biotic and abiotic stress. To date, there have been no comprehensive studies investigating chromosomal location, gene structure, gene phylogeny, conserved motifs, or gene expression of NAC in pepper (Capsicum annuum L.). The recent release of the complete genome sequence of pepper allowed us to perform a genome-wide investigation of Capsicum annuum L. NAC (CaNAC) proteins. In the present study, a comprehensive analysis of the CaNAC gene family in pepper was performed, and a total of 104 CaNAC genes were identified. Genome mapping analysis revealed that CaNAC genes were enriched on four chromosomes (chromosomes 1, 2, 3, and 6). In addition, phylogenetic analysis of the NAC domains from pepper, potato, Arabidopsis, and rice showed that CaNAC genes could be clustered into three groups (I, II, and III). Group III, which contained 24 CaNAC genes, was exclusive to the Solanaceae plant family. Gene structure and protein motif analyses showed that these genes were relatively conserved within each subgroup. The number of introns in CaNAC genes varied from 0 to 8, with 83 (78.9%) of CaNAC genes containing two or less introns. Promoter analysis confirmed that CaNAC genes are involved in pepper growth, development, and biotic or abiotic stress responses. Further, the expression of 22 selected CaNAC genes in response to seven different biotic and abiotic stresses [salt, heat shock, drought, Phytophthora capsici, abscisic acid, salicylic acid (SA), and methyl jasmonate (MeJA)] was evaluated by quantitative RT-PCR to determine their stress-related expression patterns. Several putative stress-responsive CaNAC genes, including CaNAC72 and CaNAC27, which are orthologs of the known stress-responsive Arabidopsis gene ANAC055 and potato gene StNAC30, respectively, were highly regulated by treatment with different types of stress. Our results also showed that CaNAC36 plays an important role in the interaction network, interacting with 48 genes. Most of these genes are in the mitogen-activated protein kinase (MAPK) family. Taken together, our results provide a platform for further studies to identify the biological functions of CaNAC genes.


Assuntos
Capsicum , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas/fisiologia , Redes Reguladoras de Genes , Filogenia , Proteínas de Plantas , Regiões Promotoras Genéticas , Proteínas Repressoras , Capsicum/genética , Capsicum/metabolismo , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Estudo de Associação Genômica Ampla , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética
6.
Tumour Biol ; 39(6): 1010428317711661, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28639891

RESUMO

The actinomycetes strain, lut0910, was isolated from polluted soil and identified as the Rhodococcus species with 99% similarity based on the sequence analysis of 16S recombinant DNA. The extract of this strain demonstrated in vivo and in vitro antitumor activity. The treatment of two human cancer cell lines, hepatocellular carcinoma HepG2 and cervical carcinoma Hela cells, with the lut0910 extract caused the delay in cell propagation in a dose-dependent manner with an IC50 of 73.39 and 33.09 µg/mL, respectively. Also, the oral administration of lut0910 extract to the mice with a solid tumor resulted in the inhibition of tumor growth in comparison with a placebo group. The thymus and spleen indexes were significantly increased in mice groups treated with the lut0910 extract. The histopathological changes of the tumor tissues showed that there were massive necrotic areas in the tumor tissues after treatment with different doses of the lut0910 extract. Our result would provide a new way and potent source for development of new anticancer agent from the polluted environment.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Extratos Celulares/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Carcinoma Hepatocelular/patologia , Extratos Celulares/química , Feminino , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Camundongos , RNA Ribossômico 16S/genética , Rhodococcus/química , Poluentes do Solo/química , Neoplasias do Colo do Útero/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Theor Appl Genet ; 130(1): 41-52, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27650192

RESUMO

KEY MESSAGE: Next-generation sequencing enabled a fast discovery of QTLs controlling CMV resistant in pepper. The gene CA02g19570 as a possible candidate gene of qCmr2.1 was identified for resistance to CMV in pepper. Cucumber mosaic virus (CMV) is one of the most important viruses infecting pepper, but the genetic basis of CMV resistance in pepper is elusive. In this study, we identified a candidate gene for CMV resistance QTL, qCmr2.1 through SLAF-seq. Segregation analysis in F2, BC1 and F2:3 populations derived from a cross between two inbred lines 'PBC688' (CMV-resistant) and 'G29' (CMV-susceptible) suggested quantitative inheritance of resistance to CMV in pepper. Genome-wide comparison of SNP profiles between the CMV-resistant and CMV-susceptible bulks constructed from an F2 population identified two QTLs, designated as qCmr2.1 on chromosome 2 and qCmr11.1 on chromosome 11 for resistance to CMV in PBC688, which were confirmed by InDel marker-based classical QTL mapping in the F2 population. As a major QTL, joint SLAF-seq and traditional QTL analysis delimited qCmr2.1 to a 330 kb genomic region. Two pepper genes, CA02g19570 and CA02g19600, were identified in this region, which are homologous with the genes LOC104113703, LOC104248995, LOC102603934 and LOC101248357, which were predicted to encode N-like protein associated with TMV-resistant in Solanum crops. Quantitative RT-PCR revealed higher expression levels of CA02g19570 in CMV resistance genotypes. The CA02g19600 did not exhibit obvious regularity in expression patterns. Higher relative expression levels of CA02g19570 in PBC688 and F1 were compared with those in G29 during days after inoculation. These results provide support for CA02g19570 as a possible candidate gene of qCmr2.1 for resistance to CMV in pepper.


Assuntos
Capsicum/genética , Cucumovirus , Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Capsicum/virologia , Mapeamento Cromossômico , DNA de Plantas/genética , Genes de Plantas , Marcadores Genéticos , Genótipo , Mutação INDEL , Padrões de Herança , Doenças das Plantas/virologia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos
8.
Phys Chem Chem Phys ; 19(29): 19496-19505, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28719672

RESUMO

Although ice powders are widely used in gas hydrate formation experiments, the effects of ice on hydrate nucleation and what happens in the quasi-liquid layer of ice are still not well understood. Here, we used high-precision constant energy molecular dynamics simulations to study methane hydrate nucleation from vapor-liquid mixtures exposed to the basal, prismatic, and secondary prismatic planes of hexagonal ice (ice Ih). Although no significant difference is observed in hydrate nucleation processes for these different crystal planes, it is found, more interestingly, that methane hydrate can nucleate either on the ice surface heterogeneously or in the bulk solution phase homogeneously. Several factors are mentioned to be able to promote the heterogeneous nucleation of hydrates, including the adsorption of methane molecules at the solid-liquid interface, hydrogen bonding between hydrate cages and the ice structure, the stronger ability of ice to transfer heat than that of the aqueous solution, and the higher occurrence probability of hydrate cages in the vicinity of the ice surface than in the bulk solution. Meanwhile, however, the other factors including the hydrophilicity of ice and the ice lattice mismatch with clathrate hydrates can inhibit heterogeneous nucleation on the ice surface and virtually promote homogeneous nucleation in the bulk solution. Certainly, the efficiency of ice as a promoter and as an inhibitor for heterogeneous nucleation is different. We estimate that the former is larger than the latter under the working conditions. Additionally, utilizing the benefit of ice to absorb heat, the NVE simulation of hydrate formation with ice can mimic the phenomenon of ice shrinking during the heterogeneous nucleation of hydrates and lower the overly large temperature increase during homogeneous nucleation. These results are helpful in understanding the nucleation mechanism of methane hydrate in the presence of ice.

9.
Phys Chem Chem Phys ; 18(23): 15602-8, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27222203

RESUMO

By performing molecular dynamics simulations to form a hydrate with a methane nano-bubble in liquid water at 250 K and 50 MPa, we report how different ensembles, such as the NPT, NVT, and NVE ensembles, affect the nucleation kinetics of the methane hydrate. The nucleation trajectories are monitored using the face-saturated incomplete cage analysis (FSICA) and the mutually coordinated guest (MCG) order parameter (OP). The nucleation rate and the critical nucleus are obtained using the mean first-passage time (MFPT) method based on the FS cages and the MCG-1 OPs, respectively. The fitting results of MFPT show that hydrate nucleation and growth are coupled together, consistent with the cage adsorption hypothesis which emphasizes that the cage adsorption of methane is a mechanism for both hydrate nucleation and growth. For the three different ensembles, the hydrate nucleation rate is quantitatively ordered as follows: NPT > NVT > NVE, while the sequence of hydrate crystallinity is exactly reversed. However, the largest size of the critical nucleus appears in the NVT ensemble, rather than in the NVE ensemble. These results are helpful for choosing a suitable ensemble when to study hydrate formation via computer simulations, and emphasize the importance of the order degree of the critical nucleus.

10.
Phys Chem Chem Phys ; 17(14): 8870-6, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25743115

RESUMO

The results of six high-precision constant energy molecular dynamics (MD) simulations initiated from methane-water systems equilibrated at 80 MPa and 250 K indicate that methane hydrates can nucleate via multiple pathways. Five trajectories nucleate to an amorphous solid. One trajectory nucleates to a structure-I hydrate template with long-range order which spans the simulation box across periodic boundaries despite the presence of several defects. While experimental and simulation data for hydrate nucleation with different time- and length-scales suggest that there may exist multiple pathways for nucleation, including metastable intermediates and the direct formation of the globally-stable phase, this work provides the most compelling evidence that direct formation to the globally stable crystalline phase is one of the multiple pathways available for hydrate nucleation.

11.
ScientificWorldJournal ; 2014: 535690, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24737978

RESUMO

Radio Frequency Identification (RFID) is widely used to track and trace objects in traceability supply chains. However, massive uncertain data produced by RFID readers are not effective and efficient to be used in RFID application systems. Following the analysis of key features of RFID objects, this paper proposes a new framework for effectively and efficiently processing uncertain RFID data, and supporting a variety of queries for tracking and tracing RFID objects. We adjust different smoothing windows according to different rates of uncertain data, employ different strategies to process uncertain readings, and distinguish ghost, missing, and incomplete data according to their apparent positions. We propose a comprehensive data model which is suitable for different application scenarios. In addition, a path coding scheme is proposed to significantly compress massive data by aggregating the path sequence, the position, and the time intervals. The scheme is suitable for cyclic or long paths. Moreover, we further propose a processing algorithm for group and independent objects. Experimental evaluations show that our approach is effective and efficient in terms of the compression and traceability queries.


Assuntos
Algoritmos , Modelos Teóricos
12.
Genes (Basel) ; 15(6)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38927667

RESUMO

The Cucumber mosaic virus (CMV) presents a significant threat to pepper cultivation worldwide, leading to substantial yield losses. We conducted a transcriptional comparative study between CMV-resistant (PBC688) and -susceptible (G29) pepper accessions to understand the mechanisms of CMV resistance. PBC688 effectively suppressed CMV proliferation and spread, while G29 exhibited higher viral accumulation. A transcriptome analysis revealed substantial differences in gene expressions between the two genotypes, particularly in pathways related to plant-pathogen interactions, MAP kinase, ribosomes, and photosynthesis. In G29, the resistance to CMV involved key genes associated with calcium-binding proteins, pathogenesis-related proteins, and disease resistance. However, in PBC688, the crucial genes contributing to CMV resistance were ribosomal and chlorophyll a-b binding proteins. Hormone signal transduction pathways, such as ethylene (ET) and abscisic acid (ABA), displayed distinct expression patterns, suggesting that CMV resistance in peppers is associated with ET and ABA. These findings deepen our understanding of CMV resistance in peppers, facilitating future research and variety improvement.


Assuntos
Capsicum , Cucumovirus , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Cucumovirus/genética , Cucumovirus/patogenicidade , Resistência à Doença/genética , Doenças das Plantas/virologia , Doenças das Plantas/genética , Capsicum/virologia , Capsicum/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Etilenos/metabolismo , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica/métodos , Interações Hospedeiro-Patógeno/genética , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/farmacologia
13.
Int J Anal Chem ; 2024: 5535752, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766522

RESUMO

Traditional Chinese medicine (TCM) serves as a significant adjunct to chemical treatment for chronic diseases. For instance, the administration of Baitouweng decoction (BTWD) has proven effective in the treatment of ulcerative colitis. However, the limited understanding of its pharmacokinetics (PK) has impeded its widespread use. Chinese Bama miniature pigs possess anatomical and physiological similarities to the human body, making them a valuable model for investigating PK properties. Consequently, the identification of PK properties in Bama miniature pigs can provide valuable insights for guiding the clinical application of BTWD in humans. To facilitate this research, a rapid and sensitive UPLC-MS/MS method has been developed for the simultaneous quantification of eleven active ingredients of BTWD in plasma. Chromatographic separation was conducted using an Acquity UPLC HSS T3 C18 column and a gradient mobile phase comprising acetonitrile and water (containing 0.1% acetic acid). The methodology was validated in accordance with the FDA Bioanalytical Method Validation Guidance for Industry. The lower limit of quantitation fell within the range of 0.60-2.01 ng/mL. Pharmacokinetic studies indicated that coptisine chloride, berberine, columbamine, phellodendrine, and obacunone exhibited low Cmax, while fraxetin, esculin, fraxin, and pulchinenoside B4 were rapidly absorbed and eliminated from the plasma. These findings have implications for the development of effective components in BTWD and the adjustment of clinical dosage regimens.

14.
Breed Sci ; 63(3): 239-45, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24273418

RESUMO

An accurate and simple evaluation method is crucial for identifying whitefly resistance in tomato breeding. We developed an in vitro method for evaluating resistance of tomato leaves and tested this on wild and cultivated tomato varieties. We found that young leaves observed for whitefly oviposition after 8 hours provided appropriate comparative conditions. This method effectively distinguished resistance among tomato cultivars and wild species and also demonstrated significant difference in oviposition rates among leaf positions on susceptible cultivars. The in vitro test was as precise as in vivo test using intact plants and had advantages over in vivo test, and can be used for evaluating resistance in large populations.

15.
Vet Microbiol ; 280: 109699, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36812863

RESUMO

The ubiquitin-proteasome system (UPS) and autophagy-lysosome pathway (ALP) are two major protein degradation pathways in eukaryotic cells. In the present study, we investigated the role of two systems and their interaction after Brucella.suis (B.suis) infected RAW264.7 murine macrophage. We demonstrated that B.suis activated ALP by upregulating LC3-Ⅱlevels as well as incomplete inhibition of P62 expression in RAW264.7 cells. On the other hand, we used pharmacological agents to confirm that ALP contributed the intracellular proliferation of B.suis. At present, the studies on the relationship between UPS and Brucella remain less understanding. In the study, we demonstrated that UPS machinery was also activated by promoting expression of 20 s proteasome after B.suis infected RAW264.7 cells, and that, the UPS could also promote intracellular proliferation of B.suis. Many recent studies propose the close link and dynamic interconversion between UPS and ALP. Currently, the experiments demonstrated that after RAW264.7 cells infected B.suis, ALP was activated following UPS inhibition, while the UPS was not effectively activated after ALP inhibition. Last, we compared the ability to promote intracellular proliferation of B.suis between UPS and ALP. The results displayed that the ability of UPS to promote intracellular proliferation of B.suis was stronger than that of ALP, and simultaneous inhibition of UPS and ALP led to seriously affection on intracellular proliferation of B.suis. All above, our research provides a better understanding on the interaction between Brucella and both systems.


Assuntos
Brucella suis , Complexo de Endopeptidases do Proteassoma , Camundongos , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Autofagia/fisiologia , Lisossomos/metabolismo
16.
Sci Rep ; 13(1): 4058, 2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906685

RESUMO

Based on 22 qualitative traits, 13 quantitative traits, and 27 molecular markers (26 SSR and 1 InDel), in the current study we compared the diversity and population structure of 94 local landraces and 85 current breeding lines of pepper in China. The results showed that the Shannon Diversity indices of 9 qualitative traits and 8 quantitative traits in current breeding lines were greater than those of landraces, of which 11 were fruit organ-related traits. Compared with current breeding lines, the mean values of Gene Diversity index and Polymorphism Information content of local landraces were higher by 0.08 and 0.09, respectively. Population structure and phylogenetic tree analysis showed that the 179 germplasm resources could be divided into two taxa, dominated by local landraces and current breeding lines, respectively. The above results indicated that the diversity of quantitative traits of current breeding lines were higher than that of local landraces, especially traits related to fruit organs, but the genetic diversity based on molecular markers was lower than that of local landraces. Therefore, in the future breeding process, we should not only focus on the selection of target traits, but also strengthen the background selection based on molecular markers. Moreover, the genetic information of other domesticated species and wild species will be transferred to the breeding lines through interspecific crosses to expand the genetic background of the breeding material.


Assuntos
Variação Genética , Melhoramento Vegetal , Genótipo , Filogenia , Frutas
17.
Bioengineered ; 13(6): 14780-14798, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36260305

RESUMO

Sucrose, an essential carbohydrate, is transported from source to sink organs in the phloem and is involved in a variety of physiological and metabolic processes in plants. Sucrose transporter proteins (SUTs) may play significant parts in the phloem loading and unloading of sucrose. In our study, the SUT gene family was identified in four Solanaceae species (Capsicum annuum, Solanum lycopersicum, S. melongena, and S. tuberosum) and other 14 plant species ranged from lower and high plants. The comprehensive analysis was performed by integration of chromosomal distribution, gene structure, conserved motifs, evolutionary relationship and expression profiles during pepper growth under stresses. Chromosome mapping revealed that SUT genes in Solanaceae were distributed on chromosomes 4, 10 and 11. Gene structure analysis showed that the subgroup 1 members have the same number of introns and exons. All the SUTs had 12 transmembrane structural domains exception from CaSUT2 and SmSUT2, indicating that a structure variation might occurred among the Solanaceae SUT proteins. We also found a total of 20 conserved motifs, with over half of them shared by all SUT proteins, and the SUT proteins from the same subgroup shared common motifs. Phylogenetic analysis divided a total of 72 SUT genes in the plant species tested into three groups, and subgroup 1 might have diverged from a single common ancestor prior to the mono-dicot split. Finally, expression levels of CaSUTs were induced significantly under heat, cold, and salt treatments, indicating diverse functions of the CaSUTs to adapt to adverse environments.


Assuntos
Regulação da Expressão Gênica de Plantas , Solanaceae , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Solanaceae/genética , Solanaceae/metabolismo , Plantas/metabolismo , Sacarose/metabolismo
18.
Phys Chem Chem Phys ; 13(25): 12048-57, 2011 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-21614345

RESUMO

Recent advances in the molecular dynamics simulations of spontaneous nucleation and growth of methane hydrate show that an amorphous phase of the hydrate is first reached. However, the amorphous hydrate has not been well described, due to the insufficient identification of cage structures. Here, we develop a method, called "face-saturated incomplete cage analysis", which can identify all face-saturated cages in a given system. As a result, it is found that thousands of cage types and abundant occupancy states are present in the amorphous hydrate. Moreover, the crystallinity of amorphous hydrate is evaluated according to the quantitative calculation of cage linking structures, and the critical nucleus of hydrate is also estimated on the basis of clustering analysis for all face-saturated cages.

19.
Folia Microbiol (Praha) ; 65(2): 293-302, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31273645

RESUMO

Medicinal plants have been studied for potential endophytic interactions and numerous studies have provided evidence that seeds harbor diverse microbial communities, not only on their surfaces but also within the embryo. Adenosine deaminase (ADA) is known as a potential therapeutic target for the treatment of lymphoproliferative disorders and cancer. Therefore, in this study, 20 types of medicinal plant seeds were used to screen endophytic fungi with tissue homogenate and streak. In addition, 128 morphologically distinct endophyte strains were isolated and their ADA inhibitory activity determined by a spectrophotometric assay. The strain with the highest inhibitory activity was identified as Cochliobolus sp. Seven compounds were isolated from the strain using a chromatography method. Compound 3 showed the highest ADA inhibitory activity and was identified as 5-hydroxy-2-hydroxymethyl-4H-pyran-4-one, based on the results of 1H and 13C NMR spectroscopy. The results of molecular docking suggested that compound 3 binds to the active site and the nonspecific binding site of the ADA. Furthermore, we found that compound 3 is a mixed ADA inhibitor. These results indicate that endophytic strains are a promising source of ADA inhibitors and that compound 3 may be a superior source for use in the preparation of biologically active ADA inhibitor compounds used to treat cancer.


Assuntos
Inibidores de Adenosina Desaminase/química , Ascomicetos/química , Endófitos/química , Plantas Medicinais/microbiologia , Adenosina Desaminase/química , Adenosina Desaminase/metabolismo , Inibidores de Adenosina Desaminase/farmacologia , Ascomicetos/classificação , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Sítios de Ligação , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Sementes/microbiologia
20.
Phys Chem Chem Phys ; 11(44): 10427-37, 2009 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19890529

RESUMO

By performing constrained molecular dynamics simulations in the methane-water system, we successfully calculated the potential of mean force (PMF) between a dodecahedral water cage (DWC) and dissolved methane for the first time. As a function of the distance between DWC and methane, this is characterized by a deep well at approximately 6.2 A and a shallow well at approximately 10.2 A, separated by a potential barrier at approximately 8.8 A. We investigated how the guest molecule, cage rigidity and the cage orientation affected the PMF. The most important finding is that the DWC itself strongly adsorbs methane and the adsorption interaction is independent of the guests. Moreover, the activation energy of the DWC adsorbing methane is comparable to that of hydrogen bonds, despite differing by a factor of approximately 10% when considering different water-methane interaction potentials. We explain that the cage-methane adsorption interaction is a special case of the hydrophobic interaction between methane molecules. The strong net attraction in the DWC shell with radii between 6.2 and 8.8 A may act as the inherent driving force that controls hydrate formation. A cage adsorption hypothesis for hydrate nucleation is thus proposed and discussed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa