Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Neurobiol Dis ; 171: 105807, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35777536

RESUMO

Hyperthyroidism has been identified as a risk factor for cognitive disorders. The hippocampus is a key brain region associated with cognitive function, among which excitatory synapse transmission plays an important role in the process of learning and memory. However, the mechanism by which hyperthyroidism leads to cognitive dysfunction through a synaptic mechanism remains unknown. We investigated the synaptic mechanisms in the effects of hyperthyroidism in an animal model that involved repeated injection of triiodothyronine (T3). These mice displayed impaired learning and memory in the Novel object recognition test, Y-maze test, and Morris Water Maze test, as well as elevated anxiety in the elevated plus maze. Mature dendritic spines in the hippocampal CA1 region of hyperthyroid mice were significantly decreased, accompanied by decreased level of AMPA- and NMDA-type glutamate receptors in the hippocampus. In primary cultured hippocampal neurons, levels of AMPA- and NMDA-type glutamate receptors also decreased and whole-cell patch-clamp recording revealed that excitatory synaptic function was obviously attenuated after T3 treatment. Notably, pharmacological activation of AMPAR or NMDAR by intraperitoneal injection of CX546, an AMPAR agonist, or NMDA, an NMDAR agonist can restore excitatory synaptic function and corrected impaired learning and memory deficit in hyperthyroid mice. Together, our findings uncovered a previously unrecognized AMPAR and NMDAR-dependent mechanism involved in regulating hippocampal excitatory synaptic transmission and learning and memory disorders in hyperthyroidism.


Assuntos
Hipertireoidismo , Receptores de N-Metil-D-Aspartato , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/farmacologia , Hipocampo , Hipertireoidismo/complicações , Potenciação de Longa Duração/fisiologia , Camundongos , N-Metilaspartato/farmacologia , Receptores de Glutamato , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
2.
BMC Anesthesiol ; 22(1): 407, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36577969

RESUMO

BACKGROUND: It has been known that ABO blood groups are linked to the phenotypes of certain diseases; however, and the relationship between ABO blood groups and postoperative pain have not been extensively studied, especially in children. This study was to investigate whether there would be an association between the four major ABO blood groups and postoperative pain, as indicated by the differences in pain scores and rescue fentanyl requirements among blood groups in children after adenotonsillectomy. METHODS: A total of 124 children, aged 3-7 years, ASA I or II, and undergoing elective adenotonsillectomy were enrolled in the study. Postoperative pain was evaluated using the Children's Hospital of Eastern Ontario Pain Scale (CHEOPS) and the rescue fentanyl requirement in post anesthesia care unit (PACU) was analyzed. Pediatric Anesthesia Emergence Delirium (PAED) score and the duration of PACU were recorded. The postoperative nausea and vomiting (PONV) within 24 h were documented. RESULTS: Among four blood type groups, no significant differences were observed regarding surgery time, and the gaps of fentanyl given at the anesthesia induction and the first rescue fentanyl injection in PACU. However, patients from AB and B blood groups had significantly higher pain score at initial CHEOPS assessment and consequently, higher consumption of rescue fentanyl during PACU stay. A significantly higher percentage of patients had received > 1 µg/kg rescue fentanyl. Higher PAED scores were also observed in AB and B blood groups. CONCLUSION: Paediatric patients with AB and B blood type had higher postoperative CHEOPS pain score and required significantly more fentanyl for pain control than those with A and O blood type after T&A. The initial scores of PAED in patients with AB and B blood type were also higher than that in patients with A and O blood type.


Assuntos
Delírio do Despertar , Tonsilectomia , Humanos , Sistema ABO de Grupos Sanguíneos , Estudos Prospectivos , Fentanila , Tonsilectomia/efeitos adversos , Dor Pós-Operatória , Método Duplo-Cego , Analgésicos Opioides/uso terapêutico
3.
BMC Med Educ ; 22(1): 459, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705984

RESUMO

BACKGROUND: Senior medical students feel unprepared for surgical procedures and care for surgery patients when they begin their internship. This study sought to introduce and evaluate a surgical boot camp training for senior medical students. METHODS: A 44-h surgical boot camp program of lectures on clinical practice simulation, anatomical dissections, and simulated operation on cadavers was designed, implemented, and evaluated during the 2018 to 2019 academic year. A self-administered questionnaire was used to assess students' perceptions of the content, delivery, and self-confidence. The mini-Clinical Evaluation Exercise (mini-CEX) and the Operative Performance Rating System were used to assess skills essential to good clinical care and to facilitate feedback. RESULTS: Over 93% of the students were satisfied with the surgical boot camp, training equipment, and learning materials provided. After six sessions of training, 85.3% reported gaining self-confidence and performed better in some surgical procedures such as major gastrectomy. The mini-CEX scores suggested significant improvement in the students' clinical skills, attitudes, and behaviors (P < 0.01). Ninety-eight percent of students felt that the anatomical knowledge taught met their needs. The scores of the Operative Performance Rating System suggested that the students' surgical skills such as instruments handling, incising, treatment of surrounding tissues (blood vessels, nerves), and smoothness of the whole operation had increased significantly following the surgical boot camp (All P < 0.01). CONCLUSION: The surgical boot camp curriculum improved students' satisfaction and confidence in core clinical practice competencies. Therefore, medical schools the world over should continue to seek ways to bridge the gaps between pre-clinical, clinical, and internship training.


Assuntos
Internato e Residência , Estudantes de Medicina , Competência Clínica , Currículo , Educação de Pós-Graduação em Medicina/métodos , Humanos
4.
Molecules ; 27(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684330

RESUMO

Chlorogenic acid (CGA), an important metabolite in natural plant medicines such as honeysuckle and eucommia, has been shown to have potent antinociceptive effects. Nevertheless, the mechanism by which CGA relieves chronic pain remains unclear. α-amino-3-hydroxy-5-methyl-4-isooxazolpropionic acid receptor (AMPAR) is a major ionotropic glutamate receptor that mediates rapid excitatory synaptic transmission and its glutamate ionotropic receptor AMPA type subunit 1 (GluA1) plays a key role in nociceptive transmission. In this study, we used Western blot, surface plasmon resonance (SPR) assay, and the molecular simulation technologies to investigate the mechanism of interaction between CGA and AMPAR to relieve chronic pain. Our results indicate that the protein expression level of GluA1 showed a dependent decrease as the concentration of CGA increased (0, 50, 100, and 200 µM). The SPR assay demonstrates that CGA can directly bind to GluA1 (KD = 496 µM). Furthermore, CGA forms a stable binding interaction with GluA1, which is validated by molecular dynamics (MD) simulation. The binding free energy between CGA and GluA1 is -39.803 ± 14.772 kJ/mol, where van der Waals interaction and electrostatic interaction are the major contributors to the GluA1-CGA binding, and the key residues are identified (Val-32, Glu-33, Ala-36, Glu-37, Leu-48), which play a crucial role in the binding interaction. This study first reveals the structural basis of the stable interaction between CGA and GluA1 to form a binding complex for the relief of chronic pain. The research provides the structural basis to understand the treatment of chronic pain and is valuable to the design of novel drug molecules in the future.


Assuntos
Dor Crônica , Receptores de AMPA , Ácido Clorogênico/farmacologia , Humanos , Receptores de AMPA/química , Receptores de AMPA/metabolismo , Transmissão Sináptica
5.
Neurobiol Dis ; 146: 105133, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33049318

RESUMO

Dendritic spines are specialized structures involved in neuronal processes on which excitatory synaptic contact occurs. The microtubule cytoskeleton is vital for maintaining spine morphology and mature synapses. Spastin is related to microtubule-severing proteases and is involved in synaptic bouton formation. However, it is not yet known if spastin can be modified by Small Ubiquitin-like Modifier (SUMO) or how this modification regulates dendritic spines. Spastin was shown to be SUMOylated at K427, and its deSUMOylation promoted microtubule stability. In addition, SUMOylation of spastin was shown to affect signalling pathways associated with long term synaptic depression. SUMOylated spastin promoted the development of dendrites and dendritic spines. Moreover, SUMOylated spastin regulated endocytosis and affected the transport of the AMPA receptor, GluA1. Our findings suggest that SUMOylation of spastin promotes GluA1 internalization and regulates dendritic spine morphology through targeting of microtubule dynamics.


Assuntos
Espinhas Dendríticas/metabolismo , Microtúbulos/metabolismo , Receptores de AMPA/metabolismo , Espastina/metabolismo , Sumoilação/fisiologia , Animais , Depressão Sináptica de Longo Prazo/fisiologia , Neurônios/metabolismo , Ratos Sprague-Dawley , Espastina/farmacologia , Sinapses/fisiologia
6.
Bioorg Med Chem Lett ; 30(22): 127518, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32882419

RESUMO

It is urgent to develop new antiviral agents due to the continuous emergence of drug-resistant strains of influenza virus. Our earlier studies have identified that certain pentacyclic triterpene saponins with 3-O-ß-chacotriosyl residue are novel H5N1 virus entry inhibitors. In the present study, a series of C-28 modified 3-O-ß-chacotriosyl epiursolic acid derivatives via conjugation with different kinds of sides were synthesized, of which anti-H5N1 activities in A549 cells were evaluated in vitro. Among them, 10 exhibited strongest anti-H5N1 potency at the low-micromole level without cytotoxicity, surpassing the potency of ribavirin. Further mechanism studies of the lead compound 10 based on HI, SPR and molecular modeling revealed that these new 3-epiursolic acid saponins could bind tightly to the viral envelope HA protein, thus blocking the invasion of H5N1 viruses into host cells.


Assuntos
Antivirais/farmacologia , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Triterpenos/farmacologia , Internalização do Vírus/efeitos dos fármacos , Células A549 , Antivirais/síntese química , Antivirais/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Triterpenos/síntese química , Triterpenos/química , Ácido Ursólico
7.
Neural Plast ; 2017: 8197085, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28758034

RESUMO

Amyloid-ß (Aß) plays an important role in Alzheimer's disease (AD), as oligomeric Aß induces loss of postsynaptic AMPA receptors (AMPARs) leading to cognitive deficits. The loss of postsynaptic AMPARs is mediated through the clathrin-dependent endocytosis pathway, in which endophilin2 is one of the important regulatory proteins. Endophilin2, which is enriched in both the pre- and postsynaptic membrane, has previously been reported to be important for recycling of synaptic vesicles at the presynaptic membrane. However, the role of endophilin2 in oligomeric Aß-induced postsynaptic AMPAR endocytosis is not well understood. In this study, we show that endophilin2 does not affect constitutive AMPAR endocytosis. Endophilin2 knockdown, but not overexpression, resisted oligomeric Aß-induced AMPAR dysfunction. Moreover, endophilin2 colocalized and interacted with GluA1, a subunit of AMPAR, to regulate oligomeric Aß-induced AMPAR endocytosis. Thus, we have determined a role of endophilin2 in oligomeric Aß-induced postsynaptic AMPAR dysfunction, indicating possible directions for preventing the loss of AMPARs in cognitive impairment and providing evidence for the clinical treatment of AD.


Assuntos
Aciltransferases/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Endocitose , Fragmentos de Peptídeos/metabolismo , Receptores de AMPA/metabolismo , Animais , Hipocampo/metabolismo , Humanos , Neurônios/metabolismo , Ratos Sprague-Dawley
8.
Neural Plast ; 2015: 371496, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26682072

RESUMO

Endophilin isoforms perform distinct characteristics in their interactions with N-type Ca(2+) channels and dynamin. However, precise functional differences for the endophilin isoforms on synaptic vesicle (SV) endocytosis remain unknown. By coupling RNA interference and electrophysiological recording techniques in cultured rat hippocampal neurons, we investigated the functional differences of three isoforms of endophilin in SV endocytosis. The results showed that the amplitude of normalized evoked excitatory postsynaptic currents in endophilin1 knockdown neurons decreased significantly for both single train and multiple train stimulations. Similar results were found using endophilin2 knockdown neurons, whereas endophilin3 siRNA exhibited no change compared with control neurons. Endophilin1 and endophilin2 affected SV endocytosis, but the effect of endophilin1 and endophilin2 double knockdown was not different from that of either knockdown alone. This result suggested that endophilin1 and endophilin2 functioned together but not independently during SV endocytosis. Taken together, our results indicate that SV endocytosis is sustained by endophilin1 and endophilin2 isoforms, but not by endophilin3, in primary cultured hippocampal neurons.


Assuntos
Aciltransferases/fisiologia , Endocitose , Hipocampo/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Vesículas Sinápticas/fisiologia , Aciltransferases/metabolismo , Animais , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores , Células HEK293 , Hipocampo/enzimologia , Hipocampo/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/enzimologia , Neurônios/metabolismo , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Ratos , Ratos Sprague-Dawley
9.
Neural Plast ; 2015: 947423, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26064693

RESUMO

Cytoskeleton dynamics are critical phenomena that underpin many fundamental cellular processes. Collapsin response mediator proteins (CRMPs) are highly expressed in the developing nervous system, mediating growth cone guidance, neuronal polarity, and axonal elongation. However, whether and how CRMPs associate with microtubules and actin coordinated cytoskeletal dynamics remain unknown. In this study, we demonstrated that CRMP2 and CRMP4 interacted with tubulin and actin in vitro and colocalized with the cytoskeleton in the transition-zone in developing growth cones. CRMP2 and CRMP4 also interacted with one another coordinately to promote growth cone development and axonal elongation. Genetic silencing of CRMP2 enhanced, whereas overexpression of CRMP2 suppressed, the inhibitory effects of CRMP4 knockdown on axonal development. In addition, knockdown of CRMP2 or overexpression of truncated CRMP2 reversed the promoting effect of CRMP4. With the overexpression of truncated CRMP2 or CRMP4 lacking the cytoskeleton interaction domain, the promoting effect of CRMP was suppressed. These data suggest a model in which CRMP2 and CRMP4 form complexes to bridge microtubules and actin and thus work cooperatively to regulate growth cone development and axonal elongation.


Assuntos
Citoesqueleto/metabolismo , Cones de Crescimento/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Actinas/metabolismo , Animais , Células Cultivadas , Técnicas de Silenciamento de Genes , Hipocampo/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/genética , Ratos Sprague-Dawley , Tubulina (Proteína)/metabolismo
10.
Heliyon ; 10(4): e25848, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38404842

RESUMO

The assessment of energy performance in smart buildings has emerged as a prominent area of research driven by the increasing energy consumption trends worldwide. Analyzing the attributes of buildings using optimized machine learning models has been a highly effective approach for estimating the cooling load (CL) and heating load (HL) of the buildings. In this study, an artificial neural network (ANN) is used as the basic predictor that undergoes optimization using five metaheuristic algorithms, namely coati optimization algorithm (COA), gazelle optimization algorithm (GOA), incomprehensible but intelligible-in-time logics (IbIL), osprey optimization algorithm (OOA), and sooty tern optimization algorithm (STOA) to predict the CL and HL of a residential building. The models are trained and tested via an Energy Efficiency dataset (downloaded from UCI Repository). A score-based ranking system is built upon three accuracy evaluators including mean absolute percentage error (MAPE), root mean square error (RMSE), and percentage-Pearson correlation coefficient (PPCC) to compare the prediction accuracy of the models. Referring to the results, all models demonstrated high accuracy (e.g., PPCCs >89%) for predicting both CL and HL. However, the calculated final scores of the models (43, 20, 39, 38, and 10 in HL prediction and 36, 20, 42, 42, and 10 in CL prediction for the STOA, OOA, IbIL, GOA, and COA, respectively) indicated that the GOA, IbIL, and STOA perform better than COA and OOA. Moreover, a comparison with various algorithms used in earlier literature showed that the GOA, IbIL, and STOA provide a more accurate solution. Therefore, the use of ANN optimized by these three algorithms is recommended for practical early forecast of energy performance in buildings and optimizing the design of energy systems.

11.
Mol Neurobiol ; 61(8): 6045-6059, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38267753

RESUMO

Surface trafficking of AMPA receptors (AMPARs) is one of the important mechanisms mediating synaptic plasticity which is essential for cognitive functions such as learning and memory. Spastin, as a novel binding partner for the AMPAR, has been reported to regulate AMPAR surface expression and synaptic function. Additionally, Spastin undergoes two posttranslational modifications, phosphorylation and SUMOylation, both of which are crucial for synaptic function. However, gaps exist in our knowledge of how Spastin phosphorylation cross-talks with its SUMOylation in the regulation of AMPAR surface expression and synaptic function. Here, we reported that deSUMOylation of Spastin at Lys427 increased the surface level of AMPAR GluA2 subunit, the amplitude and frequency of miniature excitatory synaptic currents (mEPSC), and facilitated the morphological maturation of dendritic spines in cultured hippocampal neurons. Further studies demonstrated that Spastin phosphorylation at Ser210 further increased the enhancement of GluA2 surface expression and synaptic function by deSUMOylated Spastin, while dephosphorylation had the opposite effect. Simultaneously, deSUMOylation at Lys427 significantly increased the promoting effect of Spastin phosphorylation on synaptic function. In conclusion, our study suggests that cooperative interactions between phosphorylated and deSUMOylated Spastin are novel pathways to enhance synaptic function.


Assuntos
Hipocampo , Receptores de AMPA , Sinapses , Receptores de AMPA/metabolismo , Animais , Fosforilação , Sinapses/metabolismo , Hipocampo/metabolismo , Espinhas Dendríticas/metabolismo , Serina/metabolismo , Sumoilação , Neurônios/metabolismo , Humanos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Células Cultivadas , Ratos Sprague-Dawley , Células HEK293 , Membrana Celular/metabolismo , Transporte Proteico/efeitos dos fármacos , Ratos
12.
Neuropsychopharmacology ; 49(8): 1318-1329, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38438592

RESUMO

Clinical studies have shown that the mediodorsal thalamus (MD) may play an important role in the development of depression. However, the molecular and circuit mechanisms by which the mediodorsal thalamus (MD) participates in the pathological processes of depression remain unclear. Here, we show that in male chronic social defeat stress (CSDS) mice, the calcium signaling activity of glutamatergic neurons in MD is reduced. By combining conventional neurotracer and transneuronal virus tracing techniques, we identify a synaptic circuit connecting MD and medial prefrontal cortex (mPFC) in the mouse. Brain slice electrophysiology and fiber optic recordings reveal that the reduced activity of MD glutamatergic neurons leads to an excitatory-inhibitory imbalance of pyramidal neurons in mPFC. Furthermore, activation of MD glutamatergic neurons restores the electrophysiological properties abnormal in mPFC. Optogenetic activation of the MD-mPFC circuit ameliorates anxiety and depression-like behaviors in CSDS mice. Taken together, these data support the critical role of MD-mPFC circuit on CSDS-induced depression-like behavior and provide a potential mechanistic explanation for depression.


Assuntos
Depressão , Camundongos Endogâmicos C57BL , Vias Neurais , Optogenética , Córtex Pré-Frontal , Derrota Social , Estresse Psicológico , Animais , Córtex Pré-Frontal/metabolismo , Estresse Psicológico/fisiopatologia , Masculino , Depressão/fisiopatologia , Vias Neurais/fisiopatologia , Camundongos , Núcleo Mediodorsal do Tálamo , Neurônios/fisiologia , Neurônios/metabolismo , Células Piramidais/fisiologia
13.
Neurobiol Stress ; 31: 100654, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38948390

RESUMO

Chronic pain can induce mood disorders and cognitive dysfunctions, such as anxiety, depression, and learning and memory impairment in humans. However, the specific neural network involved in anxiety- and depression-like behaviors and learning and memory impairment caused by chronic pain remains poorly understood. In this study, behavioral test results showed that chronic pain induced anxiety- and depression-like behaviors, and learning and memory impairment in male mice. c-Fos immunofluorescence and fiber photometry recording showed that glutamatergic neurons in the LH of mice with chronic pain were selectively activated. Next, the glutamatergic neurons of LH in normal mice were activated using optogenetic and chemogenetic methods, which recapitulates some of the depressive-like behaviors, as well as memory impairment, but not anxiety-like behavior. Finally, inhibition of glutamatergic neurons in the LH of mice with chronic pain, effectively relieved anxiety- and depression-like behaviors and learning and memory impairment. Taken together, our findings suggest that hyperexcitation of glutamatergic neurons in the LH is involved in depression-like behavior and learning and memory impairment induced by chronic pain.

14.
Transl Psychiatry ; 14(1): 149, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493173

RESUMO

Chronic stress-induced anxiodepression is a common health problem, however its potential neurocircuitry mechanism remains unclear. We used behavioral, patch-clamp electrophysiology, chemogenetic, and optogenetic approaches to clarify the response of the lateral hypothalamus (LH) and the medial prefrontal cortex (mPFC) to stress, confirmed the structural connections between the LH and mPFC, and investigated the role of the LH-mPFC pathway in chronic stress-induced anxiodepression symptoms. Unpredictable chronic mild stress (UCMS) caused anxiodepression-like behaviors, including anxiety, anhedonia, and despair behaviors. We discovered that the activity of the LH and mPFC was both increased after restraint stress (RS), a stressor of UCMS. Then we found that the orexinergic neurons in the LH predominantly project to the glutamatergic neurons in the mPFC, and the excitability of these neurons were increased after UCMS. In addition, overactivated LH orexinergic terminals in the mPFC induced anhedonia but not anxiety and despair behaviors in naive mice. Moreover, chemogenetically inhibited LH-mPFC orexinergic projection neurons and blocked the orexin receptors in the mPFC alleviated anhedonia but not anxiety and despair behaviors in UCMS-treated mice. Our study identified a new neurocircuit from LH orexinergic neurons to mPFC and revealed its role in regulating anhedonia in response to stress. Overactivation of LHOrx-mPFC pathway selectively mediated chronic stress-induced anhedonia. In normal mice, the LHOrx-mPFC pathway exhibits relatively low activity. However, after chronic stress, the activity of orexinergic neuron in LH is overactivated, leading to an increased release of orexin into the mPFC. This heightened orexin concentration results in increased excitability of the mPFC through OX1R and OX2R, consequently triggering anhedonia.


Assuntos
Anedonia , Região Hipotalâmica Lateral , Camundongos , Animais , Região Hipotalâmica Lateral/metabolismo , Orexinas/metabolismo , Ansiedade , Córtex Pré-Frontal/metabolismo
15.
Heliyon ; 10(6): e27637, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38510046

RESUMO

Introduction: The typical functionality of astrocytes was previously shown to be disrupted by Parkinson's disease (PD), which actively regulates synaptic neurotransmission. However, the morphological changes in astrocytes wrapping glutamatergic synapses in the striatum after dopamine (DA) neuronal degeneration is unclear. Methods: We utilized a range of methodologies, encompassing the 6-hydroxydopamine (6OHDA)-induced PD model, as well as techniques such as immunohistochemistry, Western blotting, immunofluorescence and immunoelectron microscopy (IEM) to delve into the consequences of DA neuronal degeneration on the morphological attributes of perisynaptic astrocytes. Results: Our findings demonstrated a notable rise in glial fibrillary acidic protein (GFAP) + astrocyte density and an upregulation in GFAP protein expression within the striatum due to DA neuronal degeneration, coincided with the enlargement, elongation, and thickening of astrocyte protuberances. However, the expression levels of glutamate transporter 1 (GLT1) and glutamine synthetase (GS), which are related to glutamate-glutamine cycle, were significantly reduced. Double immunofluorescence and IEM results indicated that different proportions of vesicular glutamate transporter 1 (VGlut1)+ and vesicular glutamate transporter 2 (VGlut2) + terminals were wrapped by astrocytes. Additionally, DA neuronal degeneration increased the percentage and area of VGlut1+ and VGlut2+ terminals wrapped by GFAP + astrocytes in the striatum. Furthermore, we noted that DA neuronal degeneration increased the percentage of VGlut1+ and VGlut2+ axo-spinous synapses wrapped by astrocytes but had no effect on axo-dendritic synapses. Conclusion: Hence, perisynaptic astrocytes wrapping striatal glutamatergic synapses exhibit substantial morphological and functional alterations following DA neuronal degeneration making them a potential target for therapeutic interventions in PD.

16.
Adv Sci (Weinh) ; : e2401855, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973158

RESUMO

Clinically, chronic pain and depression often coexist in multiple diseases and reciprocally reinforce each other, which greatly escalates the difficulty of treatment. The neural circuit mechanism underlying the chronic pain/depression comorbidity remains unclear. The present study reports that two distinct subregions in the paraventricular thalamus (PVT) play different roles in this pathological process. In the first subregion PVT posterior (PVP), glutamatergic neurons (PVPGlu) send signals to GABAergic neurons (VLPAGGABA) in the ventrolateral periaqueductal gray (VLPAG), which mediates painful behavior in comorbidity. Meanwhile, in another subregion PVT anterior (PVA), glutamatergic neurons (PVAGlu) send signals to the nucleus accumbens D1-positive neurons and D2-positive neurons (NAcD1→D2), which is involved in depression-like behavior in comorbidity. This study demonstrates that the distinct thalamo-subcortical circuits PVPGlu→VLPAGGABA and PVAGlu→NAcD1→D2 mediated painful behavior and depression-like behavior following spared nerve injury (SNI), respectively, which provides the circuit-based potential targets for preventing and treating comorbidity.

17.
Mol Neurobiol ; 60(4): 2277-2294, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36645630

RESUMO

Hepatic encephalopathy (HE) is a nervous system disease caused by severe liver diseases and different degrees of learning and memory dysfunction. Long non-coding RNA (lncRNA) is highly expressed in the brain and plays important roles in central nervous system diseases like Alzheimer's disease. In the present work, we found that the expression of lnc240 in the hippocampus of HE mice was significantly downregulated, but its pathogenesis in HE has not been clarified. This study aimed to explore the effects of lnc240 on the cognitive function of HE. The expression of lnc240, miR-1264-5p, and MEF2C was analyzed with RNA-seq and further determined by qRT-PCR in HE mouse. Double luciferase reporter gene testing confirmed the relationship between lnc240, MEF2C, and miR-1264-5p. The functional role of lnc240 and MEF2C in vitro and in vivo was evaluated by qRT-PCR, western blot analysis, immunofluorescence staining, Golgi staining, electrophysiology, and Morris water maze. The expression of lnc240 was decreased in HE mice. The overexpression of lnc240 could significantly downregulate miR-1264-5p and upregulate MEF2C, also increasing the amplitude and frequency of mEPSC in primary cultured hippocampal neurons. The overexpression of miR-1264-5p reversed the effect of lnc240 on MEF2C. Moreover, in vivo experiments have shown that the overexpression of lnc240 could improve HE mice's spatial learning and memory functions. Golgi staining suggested that overexpression of lnc240 could increase the density and maturity of dendritic spines in hippocampal neurons of HE mice. Lnc240 can regulate the expression of MEF2C through miR-1264-5p and regulate the synaptic plasticity of hippocampal neurons, thereby saving the learning and memory dysfunction in HE mice, suggesting that lnc240 might be a potential therapeutic target for the treatment of HE.


Assuntos
Doença de Alzheimer , Encefalopatia Hepática , MicroRNAs , RNA Longo não Codificante , Camundongos , Animais , MicroRNAs/genética , Aprendizagem em Labirinto , RNA Longo não Codificante/genética , Fatores de Transcrição MEF2
18.
Brain Res ; 1804: 148264, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702182

RESUMO

Cognitive impairment is one of the most common symptoms of hepatic encephalopathy (HE). However, there is a lack of easily implementable rehabilitation strategies. As an easy-to-implement strategy, numerous studies suggest that enriched environment (EE) can be beneficial for cognitive function. However, the effects of EE on learning and memory, as well as dendritic spines plasticity in HE is still unclear. Accordingly, in the present study, we evaluated the effects of EE on the behavior and dendritic spine morphology in an animal model of HE. Our results showed that HE mice have no movement disorder and anxiety, but they exhibit spatial learning and memory dysfunction. Further analysis revealed that the complexity of the dendrites and the maturity of the dendritic spines are reduced in the hippocampus of HE mice. After 4 weeks of housekeeping in EE, dendritic complexity, and dendritic spine maturity, as well as the spatial learning and memory function of HE mice were restored. In conclusion, exposure to EE can positively influence dendritic spines plasticity in the hippocampus and thereby elicit its beneficial effects on cognitive functions in HE.


Assuntos
Espinhas Dendríticas , Encefalopatia Hepática , Camundongos , Animais , Hipocampo , Aprendizagem Espacial , Transtornos da Memória , Dendritos
19.
PLoS One ; 17(4): e0267117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35482720

RESUMO

Hepatocellular carcinoma (HCC) is one of the most lethal malignancies. A growing number of studies have shown that competitive endogenous RNA (ceRNA) regulatory networks might play important roles during HCC process. The present study aimed to identify a regulatory axis of the ceRNA network associated with the development of HCC. The roles of SNX16 and PAPOLG in HCC were comprehensively analyzed using bioinformatics tools. Subsequently, the "mRNA-miRNA-lncRNA" model was then used to predict the upstream miRNAs and lncRNAs of SNX16 and PAPOLG using the miRNet database, and the miRNAs with low expression and good prognosis in HCC and the lncRNAs with high expression and poor prognosis in HCC were screened by differential expression and survival analysis. Finally, the risk-prognosis models of ceRNA network axes were constructed by univariate and multifactorial Cox proportional risk analysis, and the immune correlations of ceRNA network axes were analyzed using the TIMER and GEPIA database. In this study, the relevant ceRNA network axis GSEC/miR-101-3p/SNX16/PAPOLG with HCC prognosis was constructed, in which GSEC, SNX16, and PAPOLG were highly expressed in HCC with poor prognosis, while miR-101-3p was lowly expressed in HCC with good prognosis. The risk-prognosis model predicted AUC of 0.691, 0.623, and 0.626 for patient survival at 1, 3, and 5 years, respectively. Immuno-infiltration analysis suggested that the GSEC/miR-101-3p/SNX16/PAPOLG axis might affect macrophage polarization. The GSEC/miR-101-3p/SNX16/PAPOLG axis of the ceRNA network axis might be an important factor associated with HCC prognosis and immune infiltration.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Carcinoma Hepatocelular/genética , RNA Polimerases Dirigidas por DNA/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Polinucleotídeo Adenililtransferase/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo
20.
Front Cell Neurosci ; 16: 809934, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418834

RESUMO

Synaptic plasticity is essential for cognitive functions such as learning and memory. One of the mechanisms involved in synaptic plasticity is the dynamic delivery of AMPA receptors (AMPARs) in and out of synapses. Mutations of SPAST, which encodes SPASTIN, a microtubule-severing protein, are considered the most common cause of hereditary spastic paraparesis (HSP). In some cases, patients with HSP also manifest cognitive impairment. In addition, mice with Spastin depletion exhibit working and associative memory deficits and reduced AMPAR levels. However, the exact effect and molecular mechanism of Spastin on AMPARs trafficking has remained unclear. Here, we report that Spastin interacts with AMPAR, and phosphorylation of Spastin enhances its interaction with AMPAR subunit GluA2. Further study shows that phosphorylation of Spastin can increase AMPAR GluA2 surface expression and the amplitude and frequency of miniature excitatory synaptic currents (mEPSC) in cultured hippocampal neurons. Moreover, phosphorylation of Spastin at Ser210 is crucial for GluA2 surface expression. Phosphorylation of Spastin K353A, which obliterates microtubule-severing activity, also promotes AMPAR GluA2 subunit trafficking to the surface and increases the amplitude and frequency of mEPSCs in cultured neurons. Taken together, our data demonstrate that Spastin phosphorylation promotes the surface delivery of the AMPAR GluA2 subunit independent of microtubule dynamics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa