Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Phys Chem Chem Phys ; 26(7): 6049-6057, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38295372

RESUMO

Boron-based complex clusters are a fertile ground for the exploration of exotic chemical bonding and dynamic structural fluxionality. Here we report on the computational design of a ternary MgTa2B6 cluster via global structural searches and quantum chemical calculations. The cluster turns out to be a new member of the molecular rotor family, closely mimicking a turning clock at the subnanoscale. It is composed of a hexagonal B6 ring with a capping Ta atom at the top and bottom, whereas the Mg atom is linked to one Ta site as a radial Ta-Mg dimer. These components serve as the dial, axis, and hand of a nanoclock, respectively. Chemical bonding analyses reveal that the inverse sandwich Ta2B6 motif in the cluster features 6π/6σ double aromaticity, whose electron counting conforms to the (4n + 2) Hückel rule. The Ta-Mg dimer has a Lewis-type σ bond, and the Mg site has negligible bonding with B6 ring. The ternary cluster can be formulated as an [Mg]0[Ta2B6]0 complex. Molecular dynamics simulations suggest that the cluster is structurally fluxional analogous to a nanoclock, even at a low temperature of 100 K. The Ta-Mg hand turns almost freely around the Ta2 axis and along the B6 dial. The tiny intramolecular rotation barrier is less than 0.3 kcal mol-1, being dictated by the bonding nature of double 6π/6σ aromaticity. The present system offers a new type of molecular rotor in physical chemistry.

2.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474066

RESUMO

Planar tetracoordinate silicon, germanium, tin, and lead (ptSi/Ge/Sn/Pb) species are scarce and exotic. Here, we report a series of penta-atomic ptSi/Ge/Sn/Pb XB2Bi2 (X = Si, Ge, Sn, Pb) clusters with 20 valence electrons (VEs). Ternary XB2Bi2 (X = Si, Ge, Sn, Pb) clusters possess beautiful fan-shaped structures, with a Bi-B-B-Bi chain surrounding the central X core. The unbiased density functional theory (DFT) searches and high-level CCSD(T) calculations reveal that these ptSi/Ge/Sn/Pb species are the global minima on their potential energy surfaces. Born-Oppenheimer molecular dynamics (BOMD) simulations indicate that XB2Bi2 (X = Si, Ge, Sn, Pb) clusters are robust. Bonding analyses indicate that 20 VEs are perfect for the ptX XB2Bi2 (X = Si, Ge, Sn, Pb): two lone pairs of Bi atoms; one 5c-2e π, and three σ bonds (two Bi-X 2c-2e and one B-X-B 3c-2e bonds) between the ligands and X atom; three 2c-2e σ bonds and one delocalized 4c-2e π bond between the ligands. The ptSi/Ge/Sn/Pb XB2Bi2 (X = Si, Ge, Sn, Pb) clusters possess 2π/2σ double aromaticity, according to the (4n + 2) Hückel rule.


Assuntos
Tetranitrato de Pentaeritritol , Rubiaceae , Gravidez , Feminino , Humanos , Elétrons , Chumbo , Simulação de Dinâmica Molecular , Parto
3.
Phys Chem Chem Phys ; 25(39): 26443-26454, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37740349

RESUMO

Boron-based nanoclusters show unique geometric structures, nonclassical chemical bonding, and dynamic structural fluxionality. We report here on the theoretical prediction of a binary Pd3B26 cluster, which is composed of a triangular Pd3 core and a tubular double-ring B26 unit in a coaxial fashion, as identified through global structural searches and electronic structure calculations. Molecular dynamics simulations indicate that in the core-shell alloy cluster, the B26 double-ring unit can rotate freely around its Pd3 core at room temperature and beyond. The intramolecular rotation is virtually barrier free, thus giving rise to an antifriction bearing system (or ball bearing) at the nanoscale. The dimension of the dynamic system is only 0.66 nm. Chemical bonding analysis reveals that Pd3B26 cluster possesses double 14π/14σ aromaticity, following the (4n + 2) Hückel rule. Among 54 pairs of valence electrons in the cluster, the overwhelming majority are spatially isolated from each other and situated on either the B26 tube or the Pd3 core. Only one pair of electrons are primarily responsible for chemical bonding between the tube and the core, which greatly weaken the bonding within the Pd3 core and offers structural flexibility. This is a key mechanism that effectively diminishes the intramolecular rotation barrier and facilitates dynamic structural fluxionality of the system. The current work enriches the field of nanorotors and nanomachines.

4.
Molecules ; 28(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36770609

RESUMO

Hypercoordinate transition-metal species are mainly dominated by the 18-valence-electron (18ve) counting. Herein, we report ternary MAl6S6 (M = Ni, Pd, Pt) clusters with the planar hexacoordinate metal (phM) centers, which feature 16ve counting instead of the classic 18ve rule. These global-minimum clusters are established via unbiased global searches, followed by PBE0 and single-point CCSD(T) calculations. The phM MAl6 units are stabilized by six peripheral bridging S atoms in these star-like species. Chemical bonding analyses reveal that there are 10 delocalized electrons around the phM center, which can render the aromaticity according to the (4n + 2) Hückel rule. It is worth noting that adding an (or two) electron(s) to its π-type lowest unoccupied molecular orbital (LUMO) will make the system unstable.

5.
Molecules ; 28(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37050043

RESUMO

Planar tetracoordinate carbon (ptC) species are scarce and exotic. Introducing four peripheral Te/Po auxiliary atoms is an effective strategy to flatten the tetrahedral structure of CAl4 (Td, 1A1). Neutral CAl4X4 (X = Te, Po) clusters possess quadrangular star structures containing perfect ptC centers. Unbiased density functional theory (DFT) searches and high-level CCSD(T) calculations suggest that these ptC species are the global minima on the potential energy surfaces. Bonding analyses indicate that 40 valence-electron (VE) is ideal for the ptC CAl4X4 (X = Te, Po): one delocalized π and three σ bonds for the CAl4 core; four lone pairs (LPs) of four X atoms, eight localized Al-X σ bonds, and four delocalized Al-X-Al π bonds for the periphery. Thus, the ptC CAl4X4 (X = Te, Po) clusters possess the stable eight electron structures and 2π + 6σ double aromaticity. Born-Oppenheimer molecular dynamics (BOMD) simulations indicate that neutral ptC CAl4X4 (X = Te, Po) clusters are robust.

6.
Molecules ; 28(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37513457

RESUMO

As one of the important probes of chemical bonding, planar tetracoordinate carbon (ptC) compounds have been receiving much attention. Compared with ptC clusters, the heavier planar tetracoordinate silicon, germanium, tin, lead (ptSi/Ge/Sn/Pb) systems are scarcer and more exotic. The 18-valence-electron (ve)-counting is one important guide, though not the only rule, for the design of planar tetra-, penta-coordinate carbon and silicon clusters. The 18ve ptSi/Ge system is very scarce and needs to be expanded. Based on the isoelectronic principle and bonding similarity between the Al atom and the BeH unit, inspired by the previously reported ptSi global minimum (GM) SiAl42-, a series of ternary 18 ve XBe4H5- (X = Si, Ge, Sn, Pb) clusters were predicted with the ptSi/Ge/Sn/Pb centers. Extensive density functional theory (DFT) global minimum searches and high-level CCSD(T) calculations performed herein indicated that these ptSi/Ge/Sn/Pb XBe4H5- (X = Si, Ge, Sn, Pb) clusters were all true GMs on their potential energy surfaces. These GMs of XBe4H5- (X = Si, Ge, Sn, Pb) species possessed the beautiful fan-shaped structures: XBe4 unit can be stabilized by three peripheries bridging H and two terminal H atoms. It should be noted that XBe4H5- (X = Si, Ge, Sn, Pb) were the first ternary 18 ve ptSi/Ge/Sn/Pb species. The natural bond orbital (NBO), canonical molecular orbitals (CMOs) and adaptive natural densitpartitioning (AdNDP) analyses indicated that 18ve are ideal for these ptX clusters: delocalized one π and three σ bonds for the XBe4 core, three Be-H-Be 3c-2e and two Be-H σ bonds for the periphery. Additionally, 2π plus 6σ double aromaticity was found to be crucial for the stability of the ptX XBe4H5- (X = Si, Ge, Sn, Pb) clusters. The simulated photoelectron spectra of XBe4H5- (X = Si, Ge, Sn, Pb) clusters will provide theoretical basis for further experimental characterization.

7.
Phys Chem Chem Phys ; 24(11): 7068-7076, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35258052

RESUMO

A class of ternary 14-electron clusters, XB2Be2 (X = Si, Ge, Sn, Pb), have been computationally predicted with a planar tetracoordinate silicon (ptSi) unit, as well as its heavier ptGe/Sn/Pb congeners. These pentaatomic ptSi/Ge/Sn/Pb species are established as global-minimum structures via computer global searches, followed by electronic structure calculations at the PBE0-D3, B3LYP-D3, and single-point CCSD(T) levels. Molecular dynamics simulations indicate that they are also kinetically stable against isomerization or decomposition. Chemical bonding analyses show that the clusters have double 2π/2σ aromaticity. The latter concept underlies the stability of ptSi/Ge/Sn/Pb clusters, overriding the 14-electron count or its variants, such as the 18-electron rule. No sp3 hybridization occurs in these species, which naturally explains why they are ptSi/Ge/Sn/Pb (rather than traditional tetrahedral) systems.

8.
Molecules ; 27(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36364234

RESUMO

We systematically explore the potential energy surface of the B3Al4+ combination of atoms. The putative global minimum corresponds to a structure formed by an Al4 square facing a B3 triangle. Interestingly, the dynamical behavior can be described as a Reuleaux molecular triangle since it involves the rotation of the B3 triangle at the top of the Al4 square. The molecular dynamics simulations, corroborating with the very small rotational barriers of the B3 triangle, show its nearly free rotation on the Al4 ring, confirming the fluxional character of the cluster. Moreover, while the chemical bonding analysis suggests that the multicenter interaction between the two fragments determines its fluxionality, the magnetic response analysis reveals this cluster as a true and fully three-dimensional aromatic system.


Assuntos
Simulação de Dinâmica Molecular
9.
J Phys Chem A ; 125(23): 5022-5030, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34096293

RESUMO

Planar C2v B19- global-minimum (GM) cluster is known as a molecular Wankel motor, featuring unique chemical bonding and structural fluxionality. While the geometry, bonding, and molecular dynamics of the cluster are documented in the literature, it remains warranted to fully understand its bonding nature and unravel the mechanism behind the structural dynamics. We shall offer herein an updated bonding model on the bases of canonical molecular orbital (CMO) analysis and adaptive natural density partitioning (AdNDP), further aided by natural bond orbital (NBO) analysis and orbital composition calculations. The computational data indicate that the B19- cluster has inner 2π/6σ and outer 10π/14σ concentric 4-fold π/σ aromaticity. Being spatially isolated from each other, the inner B6 disk supports 2π and 6σ subsystems, whereas the outer B18 double-ring ribbon has 10π and 14σ subsystems. All 4-fold π/σ subsystems are intrinsically delocalized and conform to the (4n + 2) Hückel rule for aromaticity. The change of Wiberg bond index (WBI) from GM to transition-state (TS) for radial B-B links is minimal and uniform, which offers a semiquantitative measure of structural dynamics and underlies the low energy barrier.

10.
Phys Chem Chem Phys ; 21(39): 22048-22056, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31565718

RESUMO

Molecules with planar tetracoordinate carbons (ptCs) are exotic in chemical bonding, and they are normally designed according to the 18-electron rule. Here we report on the viability of ptC clusters with as few as 12 valence electrons, which represent the lower limit in terms of electron counting. Specifically, we have computationally designed a class of ternary 12-electron ptC clusters, CBe3X3+ (X = H, Li, Na, Cu, Ag), based on a rhombic CBe32- unit. Computer structural searches reveal that the ptC species are global minima, whose C center is coordinated in-plane by three Be atoms and a terminal X atom via robust C-Be/C-X bonding, either covalent or ionic. The other two X atoms are on the periphery and each bridge two Be atoms. Bonding analyses show that the ptC core is governed by delocalized 2π/6σ bonding, that is, double π/σ aromaticity, which collectively conforms to the 8-electron counting. Additional 4 electrons contribute to peripheral Be-X-Be and Be-Be σ bonding. The delocalized 2π/6σ frameworks appear to be universal for all ptC clusters, ranging from 18-electron down to 12-electron systems. In other words, the ptC species are dictated entirely by the 8-electron counting. Predicted vertical electron affinities of these ptC clusters range from 3.13 to 5.48 eV, indicative of superalkali or pseudoalkali cations.

11.
Phys Chem Chem Phys ; 20(9): 6299-6306, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29435545

RESUMO

Planar hypercoordinate carbons as exotic chemical species are dominated by 18-electron counting. We report herein a 16-electron planar tetracoordinate carbon (ptC) cluster, CBe4Au4, which is quasi-planar to be exact, being composed of a C center, a square-planar Be4 ring, and four outer Au bridges. The quasi-ptC cluster is established as a global minimum via computer structural searches, located 14.6 kcal mol-1 below the nearest competitor at the CCSD(T) level. It shows thermodynamic and electronic robustness, with a low electron affinity (1.54 eV at B3LYP) and a large HOMO-LUMO gap (2.21 eV for excitation energy). Bonding analyses reveal 2π and 6σ double aromaticity, in addition to four three-center two-electron (3c-2e) Be-Au-Be σ bonds, confirming that 16-electron counting is perfect for the system. We believe that double (π and σ) aromaticity is a general concept that governs planar or quasi-planar carbons, which overrides the 18-electron rule. Competition between quasi-ptC and tetrahedral carbon (thC) isomers in the CBe4M4 (M = K, Au, H, Cl) series is also examined, which sheds crucial light on factors that govern the ptC clusters. The present findings offer opportunities for further planar and unconventional molecules.

12.
Phys Chem Chem Phys ; 20(35): 22719-22729, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30137111

RESUMO

Boron-based nanoclusters have unique structures, bonding, and dynamic properties, which originate from boron's electron-deficiency. We demonstrate here that pouring in extra electrons can alter such systems fundamentally. A coaxial triple-layered Be6B102- sandwich cluster is designed via global structural searches and quantum chemical calculations. It is well defined as the global minimum, which consists of a slightly elongated B10 monocyclic ring and two Be3 rings, the latter forming a Be6 trigonal-prism albeit without interlayer Be-Be bonding. The B10 ring shows structural and chemical integrity with respect to the Be3 rings, and yet it differs markedly from the free B10 cluster and closely resembles the C10 cluster. The present data testify to the idea of electronic transmutation, in which a B- is equivalent to C and a B10 cluster, upon charge-transfer, is converted to and stabilized as a monocyclic ring analogous to C10. Chemical bonding analyses reveal that the B10 ring in the Be6B102- cluster has 10π and 10σ delocalization and each Be3 ring is held together by 2σ electrons, collectively rendering four-fold π/σ aromaticity. The bonding pattern is in line with the formula of [Be3]4+[B10]10-[Be3]4+, suggesting a highly charged electron-transfer complex. Furthermore, the Be6B102- cluster is dynamically fluxional with dual modes of revolution (orbiting) and rotation (twisting), being structurally robust at least up to a temperature of 1500 K.

13.
Phys Chem Chem Phys ; 20(10): 7217-7222, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29484332

RESUMO

Monocyclic Bn rings can act as n-electron σ-donors to stabilize a non-classical planar hypercoordinate atom at ring center, forming wheel-like structures. Herein, we report that BenHn rings can also serve as n-electron σ-donors to construct star-like structures including B©Be6H6+ and TM©Be7H7q (TM is a group 10-12 metal with q = -1, 0, and 1, respectively) by complying with octet or 18-electron rules. Electronic structure analyses show that these species are stabilized by the σ-donation and π-backdonation between the central atom and the peripheral BenHn ring, the favorable Coulomb attraction due to the negative-positive-negative charge population pattern on the central atom, the middle Ben layer, and the outer Hn layer, as well as the σ-π double aromaticity. Importantly, three of the ten species, including B©Be6H6+, Cu©Be7H7, and Au

14.
J Phys Chem A ; 122(42): 8370-8376, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30277775

RESUMO

Planar hypercoordinate carbon molecules are exotic species, for which the 18-electron counting has been considered a rule. We report herein computational evidence of perfectly planar C2 v CBe4Li4 (1) and D4 h CBe4Li42- (3) clusters. These ternary species contain 16 and 18 electrons, respectively. The dianion is highly symmetric with a planar tetracoordinate carbon (ptC), whereas the neutral features a planar pentacoordinate carbon (ppC). Thus, charge-state alters the coordination environments of a cluster. Chemical bonding analysis shows that both clusters have 2π and 6σ delocalization around the C center, suggesting that ppC or ptC clusters are governed by double π/σ aromaticity, rather than the 18-electron rule. The outer Be4Li4 ring in 1 and 3 also supports 2σ aromaticity, collectively leading to 3-fold π/σ aromaticity for these ppC/ptC clusters. Structural transformation from ptC (3) to ppC (1) is discussed, in which the 16-electron quasi-ptC CBe4Li4 (2) cluster serves as an intermediate. Cluster 2 as a local minimum has severe out-of-plane distortion. Flattening of 2 leads to reorganization of Be4 ring around the C center, which offers space for the fifth atom to coordinate and facilitates ppC formation. The latter arrangement optimizes π aromaticity and better manages intramolecular Coulomb repulsion. This work highlights the geometric factor (and unconventional electron counting) in the design of planar hypercoordinate carbons.

15.
J Phys Chem A ; 122(4): 1138-1145, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29286669

RESUMO

We report on the computational design of star-like CBe5Au5+ cluster with planar pentacoordinate carbon (ppC), which is also classified as a superalkali cation. Relevant isovalent CBe5Aunn-4 (n = 2-4), BBe5Au5, and NBe5Au52+ clusters with ppC/B/N are studied as well. Global-minimum structures of the clusters are established via computer global searches. The species feature a pentacoordinate pentagonal XBe5 (X = C, B, N) core, with Au occupying outer bridging positions. Molecular dynamics simulations indicate that they are dynamically stable. Bonding analysis reveals 3-fold (π and σ) aromaticity in CBe5Au5+, a key concept that overrides the 18-electron rule and should be applicable for (or help revisit existing models of) other planar hypercoordinate systems. Vertical electron affinities of CBe5Au5+ and its lighter counterparts (CBe5Cu5+ and CBe5Ag5+) are calculated to be unusually low, which are below 3.89 eV, the smallest atomic ionization potential of any element in the periodic table. Thus, these three clusters belong to superalkali cations. The merge of ppC and superalkali characters makes them unique chemical species.

16.
Angew Chem Int Ed Engl ; 56(34): 10174-10177, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28688126

RESUMO

Two low-lying structures are unveiled for the Be6 B11- nanocluster system that are virtually isoenergetic. The first, triple-layered cluster has a peripheral B11 ring as central layer, being sandwiched by two Be3 rings in a coaxial fashion, albeit with no discernible interlayer Be-Be bonding. The B11 ring revolves like a flexible chain even at room temperature, gliding freely around the Be6 prism. At elevated temperatures (1000 K), the Be6 core itself also rotates; that is, two Be3 rings undergo relative rotation or twisting with respect to each other. Bonding analyses suggest four-fold (π and σ) aromaticity, offering a dilute and fluxional electron cloud that lubricates the dynamics. The second, helix-type cluster contains a B11 helical skeleton encompassing a distorted Be6 prism. It is chiral and is the first nanosystem with a boron helix. Molecular dynamics also shows that at high temperature the helix cluster readily converts into the triple-layered one.

17.
J Chem Phys ; 144(24): 244303, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27369511

RESUMO

Superalkali cations, known to possess low vertical electron affinities (VEAs), high vertical detachment energies, and large highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gaps, are intriguing chemical species. Thermodynamically, such species need to be the global minima in order to serve as the promising targets for experimental realization. In this work, we propose the strategies of polyhalogenation and polyalkalination for designing the superalkali cations. By applying these strategies, the local-minimum planar pentacoordinate carbon (ppC) cluster CBe5 can be modified to form a series of star-like superalkali ppC or quasi-ppC CBe5X5 (+) (X = F, Cl, Br, Li, Na, K) cations containing a CBe5 moiety. Polyhalogenation and polyalkalination on the CBe5 unit may help eliminate the high reactivity of bare CBe5 molecule by covering the reactive Be atoms with noble halogen anions and alkali cations. Computational exploration of the potential energy surfaces reveals that the star-like ppC or quasi-ppC CBe5X5 (+) (X = F, Cl, Br, Li, Na, K) clusters are the true global minima of the systems. The predicted VEAs for CBe5X5 (+) range from 3.01 to 3.71 eV for X = F, Cl, Br and 2.12-2.51 eV for X = Li, Na, K, being below the lower bound of the atomic ionization potential of 3.89 eV in the periodic table. Large HOMO-LUMO energy gaps are also revealed for the species: 10.76-11.07 eV for X = F, Cl, Br and 4.99-6.91 eV for X = Li, Na, K. These designer clusters represent the first series of superalkali cations with a ppC center. Bonding analyses show five Be-X-Be three-center two-electron (3c-2e) σ bonds for the peripheral bonding, whereas the central C atom is associated with one 6c-2e π bond and three 6c-2e σ bonds, rendering (π and σ) double aromaticity. Born-Oppenheimer molecular dynamics simulations indicate that the CBe5 motif is robust in the clusters. As planar hypercoordination carbon species are often thermodynamically unstable and highly reactive, the superalkali cation characters of these ppC species should be highlighted, which may be suitable for experimental realization.

18.
J Chem Phys ; 145(4): 044308, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27475362

RESUMO

We report on the computational design of an all-metal aromatic sandwich, [Sb4Au4Sb4](2-). The triple-layered, square-prismatic sandwich complex is the global minimum of the system from Coalescence Kick and Minima Hopping structural searches. Following a standard, qualitative chemical bonding analysis via canonical molecular orbitals, the sandwich complex can be formally described as [Sb4](+)[Au4](4-)[Sb4](+), showing ionic bonding characters with electron transfers in between the Sb4/Au4/Sb4 layers. For an in-depth understanding of the system, one needs to go beyond the above picture. Significant Sb → Au donation and Sb ← Au back-donation occur, redistributing electrons from the Sb4/Au4/Sb4 layers to the interlayer Sb-Au-Sb edges, which effectively lead to four Sb-Au-Sb three-center two-electron bonds. The complex is a system with 30 valence electrons, excluding the Sb 5s and Au 5d lone-pairs. The two [Sb4](+) ligands constitute an unusual three-fold (π and σ) aromatic system with all 22 electrons being delocalized. An energy gap of ∼1.6 eV is predicted for this all-metal sandwich. The complex is a rare example for rational design of cluster compounds and invites forth-coming synthetic efforts.

19.
J Am Chem Soc ; 137(34): 10954-7, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26275027

RESUMO

A sandwich complex, as exemplified by ferrocene in the 1950s, usually refers to one metal center bound by two arene ligands. The subject has subsequently been extended to carbon-free aromatic ligands and multiple-metal-atom "monolayered" center, but not to an all-metal species. Here, we describe the synthesis of an unprecedented all-metal aromatic sandwich complex, [Sb3Au3Sb3](3-), which was isolated as K([2.2.2]crypt)(+) salt and identified by single-crystal X-ray diffraction. Quantum chemical calculations indicate that intramolecular electron transfers for the three metallic layers (Sb → Au donation and Sb ← Au back-donation) markedly redistribute the valence electrons from the cyclo-Sb3 ligands and Au3 interlayer to the Au-Sb bonds, which hold the complex together via σ bonding. Each cyclo-Sb3 possesses aromaticity with delocalized three-center three-electron (3c-3e) π bonds, which are essentially equivalent to a 3c-4e ππ* triplet system, following the reversed 4n Hückel rule for aromaticity in a triplet state.

20.
J Phys Chem A ; 119(52): 13101-6, 2015 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-26694982

RESUMO

The diagonal relationship between beryllium and aluminum and the isoelectronic relationship between BeH unit and Al atom were utilized to design a new series ppC- or quasi-ppC-containing species C5v CBe5H5(+), Cs CBe5H4, C2v CBe5H3(-), and C2v CBe5H2(2-) by replacing the Al atoms in previously reported global minima planar pentacoordinate carbon (ppC) species D5h CAl5(+), C2v CAl4Be, C2v CAl3Be2(-), and C2v CAl2Be3(2-) with BeH units. The three-center two-electron (3c-2e) bonds formed between Be and bridging H atoms were crucial for the stabilization of these ppC species. The natural bond orbital (NBO) and adaptive natural density partitioning (AdNDP) analyses revealed that the central ppCs or quasi-ppCs possess the stable eight electron-shell structures. The AdNDP analyses also disclosed that these species are all 6σ+2π double-aromatic in nature. The aromaticity was proved by the calculated negative nucleus-independent chemical shifts (NICS) values. DFT and high-level CCSD(T) calculations revealed that these ppC- or quasi-ppC species are the global minimum or competitive low-lying local minimum (Cs CBe5H4) on their potential energy surfaces. The Born-Oppenheimer molecular dynamic (BOMD) simulations revealed that the H atoms in C2v CBe5H3(-) and C2v CBe5H2(2-) can easily rotate around the CBe5 cores and the structure of quasi-planar C5v CBe5H5(+) will become the planar structure at room temperature; however, these interesting dynamic behaviors did not indicate the kinetic instability as the basic ppC structures were maintained during the simulations. Therefore, it would be potentially possible to realize these interesting ppC- or quasi-ppc-species in future experiments.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa