Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783571

RESUMO

Increasing crop yield depends on selecting and utilizing pleiotropic genes/alleles to improve multiple yield-related traits (YRTs) during crop breeding. However, synergistic improvement of YRTs is challenging due to the trade-offs between YRTs in breeding practices. Here, the favourable haplotypes of the TaCYP78A family are identified by analysing allelic variations in 1571 wheat accessions worldwide, demonstrating the selection and utilization of pleiotropic genes to improve yield and related traits during wheat breeding. The TaCYP78A family members, including TaCYP78A3, TaCYP78A5, TaCYP78A16, and TaCYP78A17, are organ size regulators expressed in multiple organs, and their allelic variations associated with various YRTs. However, due to the trade-offs between YRTs, knockdown or overexpression of TaCYP78A family members does not directly increase yield. Favourable haplotypes of the TaCYP78A family, namely A3/5/16/17Ap-Hap II, optimize the expression levels of TaCYP78A3/5/16/17-A across different wheat organs to overcome trade-offs and improve multiple YRTs. Different favourable haplotypes have both complementary and specific functions in improving YRTs, and their aggregation in cultivars under strong artificial selection greatly increase yield, even under various planting environments and densities. These findings provide new support and valuable genetic resources for molecular breeding of wheat and other crops in the era of Breeding 4.0.

2.
Plant Biotechnol J ; 20(1): 168-182, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34510688

RESUMO

Increasing grain yield has always been the primary goal of crop breeding. KLUH/CYP78A5 has been shown to affect seed size in several plant species, but the relevant molecular mechanism is still unclear and there are no reports of this gene contributing to yield. Here, we demonstrate that modified expression of TaCYP78A5 can enhance wheat grain weight and grain yield per plant by accumulating auxin. TaCYP78A5 is highly expressed in maternal tissues, including ovary and seed coat during wheat development. The constitutive overexpression of TaCYP78A5 leads to significantly increased seed size and weight but not grain yield per plant due to the strengthening of apical dominance. However, localized overexpression of TaCYP78A5 in maternal integument enhances grain weight and grain yield per plant by 4.3%-18.8% and 9.6%-14.7%, respectively, in field trials. Transcriptome and hormone metabolome analyses reveal that TaCYP78A5 participates in auxin synthesis pathway and promotes auxin accumulation and cell wall remodelling in ovary. Phenotype investigation and cytological observation show that localized overexpression of TaCYP78A5 in ovary results in delayed flowering and prolonged proliferation of maternal integument cells, which promote grain enlargement. Moreover, naturally occurring variations in the promoter of TaCYP78A5-2A contribute to thousand-grain weight (TGW) and grain yield per plant of wheat;TaCYP78A5-2A haplotype Ap-HapII with higher activity is favourable for improving grain weight and grain yield per plant and has been positively selected in wheat breeding. Then, a functional marker of TaCYP78A5 haplotype Ap-HapII is developed for marker-assisted selection in wheat grain and yield improvement.


Assuntos
Ácidos Indolacéticos , Triticum , Grão Comestível/genética , Ácidos Indolacéticos/metabolismo , Fenótipo , Melhoramento Vegetal , Sementes/genética , Triticum/metabolismo
3.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35457033

RESUMO

The growth of leaves is subject to strict time regulation. Several genes influencing leaf growth have been identified, but little is known about how genes regulate the orderly initiation and growth of leaves. Here, we demonstrate that TaKLU/TaCYP78A5 contributes to a time regulation mechanism in leaves from initiation to expansion. TaKLU encodes the cytochrome P450 CYP78A5, and its homolog AtKLU has been described whose deletion is detrimental to organ growth. Our results show that TaKLU overexpression increases leaf size and biomass by altering the time of leaf initiation and expansion. TaKLU-overexpressing plants have larger leaves with more cells. Further dynamic observations indicate that enlarged wheat leaves have experienced a longer expansion time. Different from AtKLU inactivation increases leaf number and initiation rates, TaKLU overexpression only smooths the fluctuations of leaf initiation rates by adjusting the initiation time of local leaves, without affecting the overall leaf number and initiation rates. In addition, complementary analyses suggest TaKLU is functionally conserved with AtKLU in controlling the leaf initiation and size and may involve auxin accumulation. Our results provide a new insight into the time regulation mechanisms of leaf growth in wheat.


Assuntos
Ácidos Indolacéticos , Folhas de Planta , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Transdução de Sinais , Triticum/genética
4.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216327

RESUMO

Plant architecture is crucial for rapeseed breeding. Here, we demonstrate the involvement of BnERF114.A1, a transcription factor for ETHYLENE RESPONSE FACTOR (ERF), in the regulation of plant architecture in Brassica napus. BnERF114.A1 is a member of the ERF family group X-a, encoding a putative 252-amino acid (aa) protein, which harbours the AP2/ERF domain and the conserved CMX-1 motif. BnERF114.A1 is localised to the nucleus and presents transcriptional activity, with the functional region located at 142-252 aa of the C-terminus. GUS staining revealed high BnERF114.A1 expression in leaf primordia, shoot apical meristem, leaf marginal meristem, and reproductive organs. Ectopic BnERF114.A1 expression in Arabidopsis reduced plant height, increased branch and silique number per plant, and improved seed yield per plant. Furthermore, in Arabidopsis, BnERF114.A1 overexpression inhibited indole-3-acetic acid (IAA) efflux, thus promoting auxin accumulation in the apex and arresting apical dominance. Therefore, BnERF114.A1 probably plays an important role in auxin-dependent plant architecture regulation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Sequência de Aminoácidos , Brassica napus/genética , Brassica rapa/genética , Regulação da Expressão Gênica de Plantas/genética , Melhoramento Vegetal/métodos , Folhas de Planta/genética , Sementes/genética , Fatores de Transcrição/genética
5.
Funct Integr Genomics ; 19(6): 853-866, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31115762

RESUMO

Wheat grain development is a robust biological process that largely determines grain quality and yield. In this study, we investigated the grain transcriptome of winter wheat cv. Xiaoyan-6 at four developmental stages (5, 10, 15, and 20 days post-anthesis), using high-throughput RNA sequencing (RNA-Seq). We identified 427 grain-specific transcription factors (TFs) and 1653 differentially expressed TFs during grain development as well as a grain co-expression regulation network (GrainNet) of the TFs and their predicted co-expressed genes. Our study identified ten putative key TFs and the predicted regulatory genes of these TFs in wheat grain development of Xiaoyan-6. The analysis was given a firm basis through the study of additional wheat tissues, including root, stem, leaf, flag leaf, grain, spikes (from wheat plants at booting or heading stages) to provide a dataset of 92,478 high-confidence protein-coding genes that were mostly evenly distributed among subgenomes, but unevenly distributed across each of the chromosomes or each of the seven homeologous groups. Within this larger framework of the transcriptomes, we identified 4659 grain-specific genes (SEGs) and 26,500 differentially expressed genes (DEGs) throughout grain development stages tested. The SEGs identified mainly associate with regulation and signaling-related biological processes, while the DEGs mainly involve in cellular component organization or biogenesis and nutrient reservoir activity during grain development of Xiaoyan-6. This study establishes new targets for modifying genes related to grain development and yield, to fine-tune expression in different varieties and environments.


Assuntos
Grão Comestível/genética , Redes Reguladoras de Genes , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Transcriptoma , Triticum/genética , Grão Comestível/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Triticum/crescimento & desenvolvimento
6.
Phytother Res ; 29(3): 357-65, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25418925

RESUMO

Studies have shown chemopreventive and/or chemotherapeutic effects of several curcumin-based combinatorial treatments on colorectal cancer cells. However, their in vivo effects remain unclear. This study has demonstrated the therapeutic effect of curcumin and oxaliplatin, alone or in combination, on subcutaneously xenografted LoVo human colorectal cancer cells in immunodeficient (nu/nu) mice in vivo. Combinatorial administration of curcumin and oxaliplatin evidently inhibited the growth of colorectal cancer in nude mice, which was significantly more effective than either agent alone. Curcumin combined with oxaliplatin treatment induced apoptosis, accompanied by ultrastructural changes and cell cycle arrest in S and G2/M phases. Further mechanism analysis indicated that while the number of apoptotic tumor cells and the expression of Bax, caspase-3, and poly (ADP-ribose) polymerase (PARP) increased significantly, the expression of Bcl-2, survivin, HSP70, pro-caspase-3, and pro-PARP were dramatically suppressed in tumor cells after the treatment with combinatorial curcumin and oxaliplatin for 22 days. Taken together, the present study has demonstrated that administration of combined curcumin and oxaliplatin effectively suppressed colorectal carcinoma in vivo through inducing apoptosis and thus may provide an effective treatment for colorectal carcinoma.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Curcumina/farmacologia , Compostos Organoplatínicos/farmacologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Masculino , Camundongos , Camundongos Nus , Oxaliplatina , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Plant Genome ; : e20480, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840306

RESUMO

Seven in absentia proteins, which contain a conserved SINA domain, are involved in regulating various aspects of wheat (Triticum aestivum L.) growth and development, especially in response to environmental stresses. However, it is unclear whether TaSINA family members are involved in regulating grain development until now. In this study, the expression pattern, genomic polymorphism, and relationship with grain-related traits were analyzed for all TaSINA members. Most of the TaSINA genes identified showed higher expression levels in young wheat spikes or grains than other organs. The genomic polymorphism analysis revealed that at least 62 TaSINA genes had different haplotypes, where the haplotypes of five genes were significantly correlated with grain-related traits. Kompetitive allele-specific PCR markers were developed to confirm the single nucleotide polymorphisms in TaSINA101 and TaSINA109 among the five selected genes in a set of 292 wheat accessions. The TaSINA101-Hap II and TaSINA109-Hap II haplotypes had higher grain weight and width compared to TaSINA101-Hap I and TaSINA109-Hap I in at least three environments, respectively. The qRT-PCR assays revealed that TaSINA101 was highly expressed in the palea shell, seed coat, and embryo in young wheat grains. The TaSINA101 protein was unevenly distributed in the nucleus when transiently expressed in the protoplast of wheat. Three homozygous TaSINA101 transgenic lines in rice (Oryza sativa L.) showed higher grain weight and size compared to the wild type. These findings provide valuable insight into the biological function and elite haplotype of TaSINA family genes in wheat grain development at a genomic-wide level.

8.
Front Plant Sci ; 10: 212, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873195

RESUMO

Wheat (Triticum aestivum L.) is one of the most important crops in the world. Squamosa promoter binding protein-like (SPL) proteins are plant-specific transcript factors and play critical roles in plant growth and development. The functions of many SPL gene family members were well characterized in Arabidopsis and rice, in contrast, research on wheat SPL genes is lagging behind. In this study, we cloned and characterized TaSPL16, an orthologous gene of rice OsSPL16, in wheat. Three TaSPL16 homoeologs are located on the short arms of chromosome 7A, 7B, and 7D, and share more than 96% sequence identity with each other. All the TaSPL16 homoeologs have three exons and two introns, with a miR156 binding site in their last exons. They encode putative proteins of 407, 409, and 414 amino acid residues, respectively. Subcellular localization showed TaSPL16 distribution in the cell nucleus, and transcription activity of TaSPL16 was validated in yeast. Analysis of the spatiotemporal expression profile showed that TaSPL16 is highly expressed in young developing panicles, lowly expressed in developing seeds and almost undetectable in vegetative tissues. Ectopic expression of TaSPL16 in Arabidopsis causes a delay in the emergence of vegetative leaves (3-4 days late), promotes early flowering (5-7 days early), increases organ size, and affects yield-related traits. These results demonstrated the regulatory roles of TaSPL16 in plant growth and development as well as seed yield. Our findings enrich the existing knowledge on SPL genes in wheat and provide valuable information for further investigating the effects of TaSPL16 on plant architecture and yield-related traits of wheat.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa