Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 5(8): 3923-3935, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35867892

RESUMO

Tissue-engineered heart valves (TEHVs) are the most promising replacement for heart valve transplantation. Decellularized heart valve (DHV) is one of the most common scaffold materials for TEHVs. In actual clinical applications, the most widely used method for treating DHV is cross-linking it with glutaraldehyde, but this method could cause serious problems such as calcification. In this study, we introduced polyhedral oligomeric silsesquioxane (POSS) nanoparticles into a poly(ethylene glycol) (PEG) hydrogel to prepare a POSS-PEG hybrid hydrogel, and then coated them on the surface of DHV to prepare the composite scaffold. The chemical structures, microscopic morphologies, cell compatibilities, blood compatibilities, and anticalcification properties were further investigated. Experimental results showed that the composite scaffold had good blood compatibility and excellent cell compatibility and could promote cell adhesion and proliferation. In vivo and in vitro anticalcification experiments showed that the introduction of POSS nanoparticles could reduce the degree of calcification significantly and the composite scaffold had obvious anticalcification ability. The DHV surface-coated with the POSS-PEG hybrid hydrogel is an alternative scaffold material with anticalcification potential for an artificial heart valve, which provides an idea for the preparation of TEHVs.


Assuntos
Materiais Biocompatíveis , Calcinose , Materiais Biocompatíveis/química , Adesão Celular , Valvas Cardíacas , Humanos , Hidrogéis , Polietilenoglicóis/química
2.
ACS Appl Bio Mater ; 4(3): 2769-2780, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014316

RESUMO

Injectable and degradable PEG hydrogel was prepared via Michael-type addition between cross-linking monomer 4-arm-PEG-MAL and two cross-linkers of hydrolysis degradable PEG-diester-dithiol and non-degradable PEG-dithiol, and it had a porous structure with the uniform pore size. The biocompatibility assays in vitro indicated that PEG hydrogel had excellent biocompatibility and can be degraded naturally without leading to any negative impact on cells. The results of antibacterial experiments showed that PEG hydrogel can inhibit the growth of bacteria. Furthermore, the Cell Counting Kit-8 (CCK-8) assay, LIVE/DEAD cell staining, and scratch healing experiments proved that PEG hydrogel can promote cell proliferation and migration, which had been further confirmed in in vivo experiments on the rat wound models. All experimental results demonstrated that PEG hydrogel is an injectable antibacterial dressing, which can promote the process of wound healing and has great potential in the field of wound healing.


Assuntos
Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Hidrogéis/farmacologia , Polietilenoglicóis/farmacologia , Cicatrização/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Escherichia coli/efeitos dos fármacos , Humanos , Hidrogéis/síntese química , Hidrogéis/química , Teste de Materiais , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tamanho da Partícula , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Staphylococcus aureus/efeitos dos fármacos
3.
ACS Appl Bio Mater ; 4(3): 2534-2543, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014371

RESUMO

Calcification of bioprosthetics is a primary challenge in the field of artificial heart valves and a main reason for biological heart valve prostheses failure. Recent advances in nanomaterial science have promoted the development of polymers with advantageous properties that are likely suitable for artificial heart valves. In this work, we developed a nanocomposite polymeric biomaterial POSS-PEG (polyhedral oligomeric silsesquioxane-polyethylene glycol) hybrid hydrogel, which not only has improved mechanical and surface properties but also excellent biocompatibility. The results of atomic force microscopy and in vivo animal experiments indicated that the content of POSS in the PEG matrix plays an important role on the surface and contributes to its biological properties, compared to the decellularized porcine aortic valve scaffold. Additionally, this modification leads to enhanced protection of the hydrogel from thrombosis. Furthermore, the introduction of POSS nanoparticles also gives the hydrogel a better calcification resistance efficacy, which was confirmed through in vitro tests and animal experiments. These findings indicate that POSS-PEG hybrid hydrogel is a potential material for functional heart valve prosthetics, and the use of POSS nanocomposites in artificial valves may offer potential long-term performance and durability advantages.


Assuntos
Materiais Biocompatíveis/química , Próteses Valvulares Cardíacas , Hidrogéis/química , Compostos de Organossilício/química , Polietilenoglicóis/química , Animais , Materiais Biocompatíveis/síntese química , Hidrogéis/síntese química , Masculino , Teste de Materiais , Estrutura Molecular , Compostos de Organossilício/síntese química , Tamanho da Partícula , Polietilenoglicóis/síntese química , Ratos , Ratos Sprague-Dawley , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa