RESUMO
Staphylococcus aureus is a major human pathogen associated with high mortality rates. The extensive use of antibiotics is associated with the rise of drug resistance, and exotoxins are not targeted by antibiotics. Therefore, monoclonal antibody (mAb) therapy has emerged as a promising solution to solve the clinical problems caused by refractory S aureus. Recent research suggests that the synergistic effects of several cytotoxins, including bicomponent toxins, are critical to the pathogenesis of S aureus. By comparing the amino acid sequences, researchers found that α-toxin and bicomponent toxins have high homology. Therefore, we aimed to screen an antibody, designated an all-in-one mAb, that could neutralize α-toxin and bicomponent toxins through hybridoma fusion. We found that this mAb has a significant pharmacodynamic effect within in vivo mouse models and in vitro experiments.
Assuntos
Toxinas Bacterianas , Infecções Estafilocócicas , Humanos , Animais , Camundongos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Staphylococcus aureus , Infecções Estafilocócicas/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêuticoRESUMO
Bridged benzazepine scaffolds, possessing unique structural and physicochemical activities, are widespread in various natural products and drugs. The construction of these skeletons often requires elaborate synthetic effort with low efficiency. Herein, we develop a simple and divergent approach for constructing various bridged benzazepines by a photocatalytic intermolecular dearomatization of naphthalene derivatives with readily available α-amino acids. The bridged motif is created via a cascade sequence involving photocatalytic 1,4-hydroaminoalkylation, alkene isomerization and cyclization. Interestingly, the diastereoselectivity can be regulated through different reaction modes in the cyclization step. Moreover, aminohydroxylation and its further bromination have also been demonstrated to access highly functionalized bridged benzazepines. Preliminary mechanistic studies have been performed to get insights into the mechanism. This method provides a divergent synthetic approach for construction of highly functionalized bridged benzazepines, which have been otherwise difficult to access.
RESUMO
By complementing traditional transition metal catalysis, photoinduced catalysis has emerged as a versatile and sustainable way to achieve carbon-heteroatom bond formation. This work discloses a visible-light-induced reaction for the formation of a C-S bond from aryl halides and inorganic sulfuration agents via electron donor-acceptor (EDA) complex photocatalysis. Divergent formations of organic sulfide and disulfide have been demonstrated under mild conditions. Preliminary mechanistic studies suggest that visible-light-induced intracomplex charge transfer within the monosulfide-anion-containing EDA complex permits the C-S bond construction reactivity.
RESUMO
Transition metal catalyzed decarbonylation offers a distinct synthetic strategy for new chemical bond formation. However, the π-backbonding between CO π* orbitals and metal center d-orbitals impedes ligand dissociation to regenerate the catalyst under mild reaction conditions. Developed here is visible light induced rhodium catalysis for decarbonylative coupling of imides with alkynes under ambient conditions. Initial mechanistic studies suggest that the rhodium complex simultaneously serves as the catalytic center and photosensitizer for decarbonylation. This visible light promoted catalytic decarbonylation strategy offers new opportunities for reviewing old transformations with ligand dissociation as a rate-determining step.
RESUMO
Depression is the most significant risk factor for suicide, yet the causes are complex and disease mechanism remains unclear. The incidence and disability rate of depression are very high and the efficacy of some traditional antidepressants is not completely satisfactory. Recently, some studies have found that benzofurans have anti-oxidation and anti-monoamine oxidase properties, which are related to depression. Euparin is a monomer compound of benzofuran, previous work by our team found that it improves the behavior of depressed mice. However, additional antidepressant effects and mechanisms of Euparin have not been reported. In this study, the Chronic Unpredictable Mild Stress (CUMS) model of mice was used to further investigate the effect and mechanism of Euparin on depression. Results showed that Euparin (8, 16 and 32 mg/kg) reduced depression-like behavior in mice compared with the model group. Meanwhile, all doses of Euparin were found to increase the contents of monoamine neurotransmitter and decrease monoamine oxidase and reactive oxygen species (ROS) levels in brain of depression mice. Additionally, Euparin restored CUMS-induced decrease of Spermidine/Spermine N1-Acetyltransferase 1 (SAT1), N-methyl-D-aspartate receptor subtype 2B (NMDAR2B) and brain derived neurotrophic factor (BDNF) expression. These findings demonstrate that Euparin has antidepressant properties, and its mechanism involves the SAT1/NMDAR2B/BDNF signaling pathway.
Assuntos
Benzofuranos/farmacologia , Depressão/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Estresse Psicológico/complicações , Acetiltransferases/metabolismo , Animais , Técnicas de Observação do Comportamento , Comportamento Animal/efeitos dos fármacos , Benzofuranos/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/diagnóstico , Depressão/patologia , Depressão/psicologia , Modelos Animais de Doenças , Dopamina , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Camundongos , Neurotransmissores/metabolismo , Norepinefrina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Serotonina/metabolismo , Organismos Livres de Patógenos Específicos , Estresse Psicológico/psicologiaRESUMO
CONTEXT: As a component of the outer membrane in Gram-negative bacteria, lipopolysaccharide (LPS)-induced proliferation and cell cycle progression of monocytes/macrophages. It has been suggested that the proapoptotic T-cell death-associated gene 51 (TDAG51) might be associated with cell proliferation and cell cycle progression; however, its role in the interaction between LPS and macrophages remains unclear. OBJECTIVE: We attempted to elucidate the role(s) of TDAG51 played in the interaction between LPS and macrophages. MATERIALS AND METHODS: We investigated TDAG51 expression in RAW264.7 cells stimulated with LPS and examined the effects of RNA interference-mediated TDAG51 down-regulation. We used CCK-8 assay and flow cytometry analysis to evaluate the interaction between TDAG51 and LPS-induced proliferation and cell cycle progression in RAW264.7 cells. RESULTS: Our findings indicate that TDAG51 is up-regulated in LPS-stimulated RAW264.7 cells, the TDAG51 siRNA effectively reduced TDAG51 protein up-regulation following LPS stimulation in RAW264.7 cells, the significant changes of the proliferation and cell cycle progression of RAW264.7 cells in TDAG51 Knockdown RAW264.7 cells treated with LPS were observed. CONCLUSION: These findings suggested that TDAG51 up-regulation is a dependent event during LPS-mediated proliferation and cell cycle progression, and which increase our understanding of the interaction mechanism between LPS and macrophages.
Assuntos
Ciclo Celular/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Fatores de Transcrição/biossíntese , Regulação para Cima/efeitos dos fármacos , Animais , Linhagem Celular , CamundongosRESUMO
Visible-light photocatalysis has evolved as a powerful technique to enable controllable radical reactions. Exploring unique photocatalytic mode for obtaining new chemoselectivity and product diversity is of great significance. Herein, we present a photo-induced chemoselective 1,2-diheteroarylation of unactivated alkenes utilizing halopyridines and quinolines. The ring-fused azaarenes serve as not only substrate, but also potential precursors for halogen-atom abstraction for pyridyl radical generation in this photocatalysis. As a complement to metal catalysis, this photo-induced radical process with mild and redox neutral conditions assembles two different heteroaryl groups into alkenes regioselectively and contribute to broad substrates scope. The obtained products containing aza-arene units permit various further diversifications, demonstrating the synthetic utility of this protocol. We anticipate that this protocol will trigger the further advancement of photo-induced alkyl/aryl halides activation.
RESUMO
BACKGROUND: Melanoma antigen gene (MAGE)-type antigens are promising targets for cancer immunotherapy as they are expressed in cancer cells but not in normal tissues, except for male germline cells. The mouse P1A antigen shares this MAGE-type expression pattern and has been used as a target antigen in preclinical tumor models aiming to induce antitumor CD8+ T-cell responses. However, so far only one MHC I-restricted P1A epitope has been identified. It is presented by H-2Ld in mice of the H-2d genetic background such as DBA/2 and BALB/c. Given the availability of multiple genetically altered strains of mice in the C57BL/6 background, it would be useful to define P1A T-cell epitopes presented by the H-2b haplotype, to facilitate more refined mechanistic studies. METHODS: We employed a heterologous prime-boost vaccination strategy based on a chimpanzee adenovirus (ChAdOx1) and a modified vaccinia Ankara (MVA) encoding P1A, to induce P1A-specific T-cell responses in C57BL/6 mice. Vaccine-induced responses were measured by intracellular cytokine staining and multiparameter flow cytometry. We mapped the immunogenic CD8 epitope and cloned the cognate T-cell receptor (TCR), which we used for adoptive cell therapy. RESULTS: ChAdOx1/MVA-P1A vaccination induces a strong P1A-specific CD8+ T-cell response in C57BL/6 mice. This response is directed against a single 9-amino acid peptide with sequence FAVVTTSFL, corresponding to P1A amino acids 43-51. It is presented by H-2Db. P1A vaccination, especially with ChAdOx1 administered intramuscularly and MVA delivered intravenously, protected mice against P1A-expressing EL4 (EL4.P1A) tumor cell challenge. We identified and cloned four TCRs that are specific for the H-2Db-restricted P1A43-51 peptide. T cells transduced with these TCRs recognized EL4.P1A but not MC38.P1A and B16F10.P1A tumor cells, likely due to differences in the proteasome subtypes present in these cells. Adoptive transfer of these T cells in mice bearing EL4.P1A tumors reduced tumor growth and increased survival. CONCLUSIONS: We identified the first CD8+ T-cell epitope of the MAGE-type P1A tumor antigen presented in the H-2b background. This opens new perspectives for mechanistic studies dissecting MAGE-type specific antitumor immunity, making use of the wealth of genetically altered mouse strains available in the C57BL/6 background. This should facilitate the advancement of specific cancer immunotherapies.
Assuntos
Linfócitos T CD8-Positivos , Vacinas Anticâncer , Epitopos de Linfócito T , Camundongos Endogâmicos C57BL , Animais , Camundongos , Epitopos de Linfócito T/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Feminino , Antígenos de Neoplasias/imunologia , Antígeno de Histocompatibilidade H-2D/imunologia , Linhagem Celular Tumoral , Antígenos H-2/imunologiaRESUMO
Migration and invasion of fibroblast-like synoviocytes (FLSs) are critical in the pathogenesis of rheumatoid arthritis (RA). Hypoxic conditions are present in RA joints, and hypoxia has been extensively studied in angiogenesis and inflammation. However, its effect on the migration and invasion of RA-FLSs remains unknown. In this study, we observed that RA-FLSs exposed to hypoxic conditions experienced epithelial-mesenchymal transition (EMT), with increased cell migration and invasion. We demonstrated that hypoxia-induced EMT was accompanied by increased hypoxia-inducible factor (HIF)-1α expression and activation of Akt. After knockdown or inhibition of HIF-1α in hypoxia by small interfering RNA or genistein (Gen) treatment, the EMT transformation and invasion ability of FLSs were regained. HIF-1α could be blocked by phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002, indicating that HIF-1α activation was regulated by the PI3K/Akt pathway. Administration of LY294002 (20 mg/kg, intra-peritoneally) twice weekly and Gen (25 mg/kg, by gavage) daily for 3 weeks from day 20 after primary immunization in a collagen-induced arthritis rat model, markedly alleviated the clinical signs, radiology progression, synovial hyperplasia, and inflammatory cells infiltration of joints. Thus, results of this study suggest that activation of the PI3K/Akt/HIF-1α pathway plays a pivotal role in mediating hypoxia-induced EMT transformation and invasion of RA-FLSs under hypoxia.
Assuntos
Artrite Reumatoide/patologia , Transição Epitelial-Mesenquimal , Fibroblastos/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Reumatoide/metabolismo , Hipóxia Celular , Movimento Celular , Cromonas/administração & dosagem , Cromonas/farmacologia , Ativação Enzimática , Feminino , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Genisteína/administração & dosagem , Genisteína/farmacologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Articulação do Joelho/patologia , Morfolinas/administração & dosagem , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , RNA Interferente Pequeno/genética , Ratos , Ratos Wistar , Transdução de Sinais , Líquido Sinovial/enzimologia , Líquido Sinovial/metabolismoRESUMO
Metallocenes are privileged backbones for synthesis and catalysis. However, the direct dehydrogenative C-H functionalization of unsymmetric metallocenes suffers from reactivity and selectivity issues. Herein, we report an electrochemically driven regioselective C-H phosphorylation of group 8 metallocenes. Mechanistic investigations indicate this dehydrogenative cross coupling occurs through an electrophilic radical substitution of the metallocene with a phosphoryl radical, facilitated by the metallocene itself. This work not only offers an efficient and divergent synthesis of phosphorylated metallocenes, but also provides a guide to interpret the reactivity and regioselectivity for the C-H functionalization of unsymmetric metallocenes.
RESUMO
Background: Candida albicans infections are particularly prevalent in immunocompromised patients. Even with appropriate treatment with current antifungal drugs, the mortality rate of invasive candidiasis remains high. Many positive results have been achieved in the current vaccine development. There are also issues such as the vaccine's protective effect is not persistent. Considering the functionality and cost of the vaccine, it is important to develop safe and efficient new vaccines with long-term effects. In this paper, an antifungal nanovaccine with Polyethyleneimine (PEI) as adjuvant was constructed, which could elicit more effective and long-term immunity via stimulating B cells to differentiate into long-lived plasma cells. Materials and Methods: Hsp90-CTD is an important target for protective antibodies during disseminated candidiasis. Hsp90-CTD was used as the antigen, then introduced SDS to "charge" the protein and added PEI to form the nanovaccine. Dynamic light scattering and transmission electron microscope were conducted to identify the size distribution, zeta potential, and morphology of nanovaccine. The antibody titers in mice immunized with the nanovaccine were measured by ELISA. The activation and maturation of long-lived plasma cells in bone marrow by nanovaccine were also investigated via flow cytometry. Finally, the kidney of mice infected with Candida albicans was stained with H&E and PAS to evaluate the protective effect of antibody in serum produced by immunized mice. Results: Nanoparticles (NP) formed by Hsp90-CTD and PEI are small, uniform, and stable. NP had an average size of 116.2 nm with a PDI of 0.13. After immunizing mice with the nanovaccine, it was found that the nano-group produced antibodies faster and for a longer time. After 12 months of immunization, mice still had high and low levels of antibodies in their bodies. Results showed that the nanovaccine could promote the differentiation of B cells into long-lived plasma cells and maintain the long-term existence of antibodies in vivo. After immunization, the antibodies in mice could protect the mice infected by C. albicans. Conclusion: As an adjuvant, PEI can promote the differentiation of B cells into long-lived plasma cells to maintain long-term antibodies in vivo. This strategy can be adapted for the future design of vaccines.
Assuntos
Polietilenoimina , Vacinas , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Animais , Antifúngicos/farmacologia , Candida albicans , Candidíase , Humanos , CamundongosRESUMO
UNLABELLED: AbstractAim:To investigate the role of glutamate and N-methyl-D-aspartate (NMDA) receptors in central sensitization following peripheral inflammation in the arcuate nucleus (ARC) of the mediobasal hypothalamus. METHODS: Mediobasal hypothalamic slices were prepared from rats undergoing peripheral inflammation, which was induced by a unilateral injection of complete Freund's adjuvant (CFA) into hind paw. Neuronal activation levels in the ARC were monitored by recording extracellular unit discharges. The NMDA receptor NR1 subunit (NR1) was measured using Western blot analysis. RESULTS: Enhanced NR1 phosphorylation was observed in the ARC of CFA-inflamed rats. Compared with the control rats, the firing rate of spontaneous discharges in ARC neurons of inflamed rats was significantly higher, and it was significantly reduced both by an NMDA receptor antagonist (MK-801, 300 µmol/L) and by a non-NMDA receptor antagonist (CNQX, 30 µmol/L). Application of exogenous glutamate (200 µmol/L) or NMDA (25 µmol/L) resulted in increased neuronal discharges for ARC neurons, which was enhanced to a greater extent in inflamed rats than in control rats. CONCLUSION: Glutamate receptor activation in the hypothalamic ARC plays a crucial role in central sensitization associated with peripheral inflammation.
Assuntos
Inflamação/fisiopatologia , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Western Blotting , Maleato de Dizocilpina/farmacologia , Ácido Glutâmico/farmacologia , Masculino , N-Metilaspartato/farmacologia , Fosforilação , Ratos , Ratos WistarRESUMO
BACKGROUND: Pain accompanying various diseases as well as invasion and postoperative pain reduce immune activities, and affect the prognosis of diseases and recovery after surgery (metastasis and relapse). While, some anesthetics and synthetic narcotics used to reduce pain are reported to suppress immune activities depending on the kind of medication and the dosing strategy. However, it is not clear how the single use of narcotics affects the immune activity at the acute stage of severe inflammatory pain. This study is undertaken to examine the effect of a single administration of morphine on the splenic NK cell activity in the acute inflammatory pain model rats. METHODS: Rats received a 50 microl s.c. injection of 4% formaldehyde into the plantar surface of the right hindpaw. The spleen was removed 2 hours later and the splenic NK-cell activity was measured by 51Cr release assay. RESULTS: Acute pain significantly reduced the splenic NK cell activity, but the single administration of morphine suppressed its reduction. CONCLUSIONS: It was indicated that the single administration of morphine could suppress the reduction of the systemic immune activity caused by acute inflammatory pain.
Assuntos
Analgésicos Opioides/administração & dosagem , Imunidade/efeitos dos fármacos , Morfina/administração & dosagem , Dor/imunologia , Animais , Inflamação/tratamento farmacológico , Inflamação/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Masculino , Dor/tratamento farmacológico , Ratos , Ratos WistarRESUMO
Ritter reaction has been recognized as an elegant strategy to construct the C-N bond. Its key feature is forming the carbocation for nucleophilic attack by nitriles. Herein, we report a complementary visible-light-induced three-component Ritter reaction of alkenes, nitriles, and α-bromo nitriles/esters, thereby providing mild and rapid access to various γ-amino nitriles/acids. Mechanistic studies indicated that traceless fluoride relay, transforming KF into imidoyl fluoride intermediate, is critical for the efficient reaction switch from atom transfer radical addition (ATRA) to the Ritter reaction. This approach to amino-alkylation of alkenes is chemoselective and operationally simple.
RESUMO
Recent decades have seen a significant increase in invasive fungal infections, resulting in unacceptably high mortality rates. Anidulafungin (AN) is the newest echinocandin and appears to have several advantages over existing antifungals. However, its poor water solubility and burdensome route of administration (i.e., repeated, long-term intravenous infusions) have limited its practical use. The objective of this study was to develop anidulafungin-loaded Human Serum Albumin (HSA) nanoparticles (NP) so as to increase both its solubility and antifungal efficacy. HSA was reduced using SDS and DTT, allowing liberation of free thiols to form the intermolecular disulfide network and nanoassembly. Reduced HSA was then added to MES buffer (0.1 M, pH 4.8) and magnetically stirred at 350 rpm and 25°C with AN (m/m 50:1) for 2 h to form nanoparticles (AN NP). We next performed routine antifungal susceptibility testing of Candida strains (n = 31) using Clinical and Laboratory Standards Institute (CLSI) methodologies. Finally, the in vivo efficacy of both AN and AN NP was investigated in a murine model of invasive infection by one of the most common fungal species-C. albicans. The results indicated that our carrier formulations successfully improved the water solubility of AN and encapsulated AN, with the latter having a particle size of 29 ± 1.5 nm with Polymer dispersity index (PDI) equaling 0.173 ± 0.039. In vitro AN NP testing revealed a stronger effect against Candida species (n = 31), with Minimum Inhibitory Concentration (MIC) values 4- to 32-fold lower than AN alone. In mice infected with Candida and having invasive candidiasis, we found that AN NP prolonged survival time (P < 0.005) and reduced fungal burden in kidneys compared to equivalent concentrations of free drug (P < 0.0001). In conclusion, the anidulafungin nanoparticles developed here have the potential to improve drug administration and therapeutic outcomes for individuals suffering from fungal diseases.
RESUMO
The Mizoroki-Heck reaction and its reductive analogue are staples of organic synthesis, but the ensuing products often lack a chemical handle for further transformation. Here we report an atom-economical cross-coupling of halopyridines and unactivated alkenes under photoredox catalysis to afford a series of alkene halopyridylation products. This protocol with mild and redox neutral conditions contributes broad substrate scope. As a complement to conventional Heck-type reaction, this radical process avoids the involvement of ß-H elimination and thus useful pyridyl and halide groups could be simultaneously and regioselectively incorporated onto alkenes. The success depends on TFA-promoted domino photocatalytic oxidative quenching activation and radical-polar crossover pathway. Plausible mechanism is proposed based on mechanistic investigations. Moreover, the reserved C - X bonds of these products are beneficial for performing further synthetic elaborations.
RESUMO
Candida albicans is a common fungal pathogen in humans that colonizes the skin and mucosal surfaces of the majority healthy individuals. How C. albicans disseminates into the bloodstream and causes life-threatening systemic infections in immunocompromised patients remains unclear. Plasminogen system activation can degrade a variety of structural proteins in vivo and is involved in several homeostatic processes. Here, for the first time, we characterized that C. albicans could capture and "subvert" host plasminogen to invade host epithelial cell surface barriers through cell-wall localized Eno1 protein. We found that the "subverted" plasminogen system plays an important role in development of invasive infection caused by C. albicans in mice. Base on this finding, we discovered a mouse monoclonal antibody (mAb) 12D9 targeting C. albicans Eno1, with high affinity to the 254FYKDGKYDL262 motif in α-helices 6, ß-sheet 6 (H6S6) loop and direct blocking activity for C. albicans capture host plasminogen. mAb 12D9 could prevent C. albicans from invading human epithelial and endothelial cells, and displayed antifungal activity and synergistic effect with anidulafungin or fluconazole in proof-of-concept in vivo studies, suggesting that blocking the function of cell surface Eno1 was effective for controlling invasive infection caused by Candida spp. In summary, our study provides the evidence of C. albicans invading host by "subverting" plasminogen system, suggesting a potential novel treatment strategy for invasive fungal infections.
Assuntos
Anticorpos Monoclonais/administração & dosagem , Antifúngicos/administração & dosagem , Candida albicans/patogenicidade , Candidemia/prevenção & controle , Fosfopiruvato Hidratase/metabolismo , Plasminogênio/metabolismo , Anidulafungina/administração & dosagem , Anidulafungina/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Antifúngicos/farmacologia , Células CACO-2 , Candidemia/metabolismo , Modelos Animais de Doenças , Sinergismo Farmacológico , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/microbiologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Feminino , Fluconazol/administração & dosagem , Fluconazol/farmacologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Fosfopiruvato Hidratase/química , Ligação Proteica/efeitos dos fármacos , Estrutura Secundária de ProteínaRESUMO
Invasive candidiasis (IC) is one of the leading causes of death among immunocompromised patients. Because of limited effective therapy treatment options, prevention of IC through vaccine is an appealing strategy. However, how to induce the generation of direct candidacidal antibodies in host remains unclear. Gpi7 mutant C. albicans is an avirulent strain that exposes cell wall ß-(1,3)-glucans. Here, we found that vaccination with the gpi7 mutant strain could protect mice against invasive candidiasis caused by C. albicans and non-albicans Candida spp. The protective effects induced by gpi7 mutant relied on long-lived plasma cells (LLPCs) secreting protective antibodies against C. albicans. Clinically, we verified a similar profile of IgG antibodies in the serum samples from patients recovering from IC to those from gpi7 mutant-vaccinated mice. Mechanistically, we found cell wall ß-(1,3)-glucan of gpi7 mutant facilitated Dectin-1 receptor dependent nuclear translocation of non-canonical NF-κB subunit RelB in macrophages and subsequent IL-18 secretion, which primed protective antibodies generation in vivo. Together, our study demonstrate that Dectin-1 engagement could trigger RelB activation to prime IL-18 expression and established a new paradigm for consideration of the link between Dectin-1 mediated innate immune response and adaptive humoral immunity, suggesting a previously unknown active vaccination strategy against Candida spp. infection.