Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 166(5): 1163-1175.e12, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27565345

RESUMO

Postsynaptic densities (PSDs) are membrane semi-enclosed, submicron protein-enriched cellular compartments beneath postsynaptic membranes, which constantly exchange their components with bulk aqueous cytoplasm in synaptic spines. Formation and activity-dependent modulation of PSDs is considered as one of the most basic molecular events governing synaptic plasticity in the nervous system. In this study, we discover that SynGAP, one of the most abundant PSD proteins and a Ras/Rap GTPase activator, forms a homo-trimer and binds to multiple copies of PSD-95. Binding of SynGAP to PSD-95 induces phase separation of the complex, forming highly concentrated liquid-like droplets reminiscent of the PSD. The multivalent nature of the SynGAP/PSD-95 complex is critical for the phase separation to occur and for proper activity-dependent SynGAP dispersions from the PSD. In addition to revealing a dynamic anchoring mechanism of SynGAP at the PSD, our results also suggest a model for phase-transition-mediated formation of PSD.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Plasticidade Neuronal , Densidade Pós-Sináptica/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Animais , Proteína 4 Homóloga a Disks-Large , Células HEK293 , Células HeLa , Hipocampo/citologia , Hipocampo/embriologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas de Membrana/química , Camundongos , Neurônios/metabolismo , Transição de Fase , Conformação Proteica em alfa-Hélice , Multimerização Proteica , Ratos , Proteínas Ativadoras de ras GTPase/química
2.
J Bacteriol ; 206(1): e0020223, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38047707

RESUMO

YisK is an uncharacterized protein in Bacillus subtilis previously shown to interact genetically with the elongasome protein Mbl. YisK overexpression leads to cell widening and lysis, phenotypes that are dependent on mbl and suppressed by mbl mutations. In the present work, we characterize YisK's localization, structure, and enzymatic activity. We show that YisK localizes as puncta that depend on Mbl. YisK belongs to the fumarylacetoacetate hydrolase (FAH) superfamily, and crystal structures revealed close structural similarity to two oxaloacetate (OAA) decarboxylases: human mitochondrial FAHD1 and Corynebacterium glutamicum Cg1458. We demonstrate that YisK can also catalyze the decarboxylation of OAA (K m = 134 µM, K cat = 31 min-1). A catalytic dead variant (YisK E148A, E150A) retains wild-type localization and still widens cells following overexpression, indicating these activities are not dependent on YisK catalysis. Conversely, a non-localizing variant (YisK E30A) retains wild-type enzymatic activity in vitro but localizes diffusely and no longer widens cells following overexpression. Together, these results suggest that YisK may be subject to spatial regulation that depends on the cell envelope synthesis machinery. IMPORTANCE The elongasome is a multiprotein complex that guides lengthwise growth in some bacteria. We previously showed that, in B. subtilis, overexpression of an uncharacterized putative enzyme (YisK) perturbed function of the actin-like elongasome protein Mbl. Here, we show that YisK exhibits Mbl-dependent localization. Through biochemical and structural characterization, we demonstrate that, like its mitochondrial homolog FAHD1, YisK can catalyze the decarboxylation of the oxaloacetate to pyruvate and CO2. YisK is the first example of an enzyme implicated in central carbon metabolism with subcellular localization that depends on Mbl.


Assuntos
Bacillus subtilis , Carboxiliases , Humanos , Bacillus subtilis/metabolismo , Carboxiliases/genética , Ácido Pirúvico , Oxaloacetatos , Hidrolases/genética
3.
Sensors (Basel) ; 24(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38475246

RESUMO

In the autonomous navigation of mobile robots, precise positioning is crucial. In forest environments with weak satellite signals or in sites disturbed by complex environments, satellite positioning accuracy has difficulty in meeting the requirements of autonomous navigation positioning accuracy for robots. This article proposes a vision SLAM/UWB tightly coupled localization method and designs a UWB non-line-of-sight error identification method using the displacement increment of the visual odometer. It utilizes the displacement increment of visual output and UWB ranging information as measurement values and applies the extended Kalman filtering algorithm for data fusion. This study utilized the constructed experimental platform to collect images and ultra-wideband ranging data in outdoor environments and experimentally validated the combined positioning method. The experimental results show that the algorithm outperforms individual UWB or loosely coupled combination positioning methods in terms of positioning accuracy. It effectively eliminates non-line-of-sight errors in UWB, improving the accuracy and stability of the combined positioning system.

4.
J Bacteriol ; 205(1): e0037522, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36515540

RESUMO

By chance, we discovered a window of extracellular magnesium (Mg2+) availability that modulates the division frequency of Bacillus subtilis without affecting its growth rate. In this window, cells grown with excess Mg2+ produce shorter cells than do those grown in unsupplemented medium. The Mg2+-responsive adjustment in cell length occurs in both rich and minimal media as well as in domesticated and undomesticated strains. Of other divalent cations tested, manganese (Mn2+) and zinc (Zn2+) also resulted in cell shortening, but this occurred only at concentrations that affected growth. Cell length decreased proportionally with increasing Mg2+ from 0.2 mM to 4.0 mM, with little or no detectable change being observed in labile, intracellular Mg2+, based on a riboswitch reporter. Cells grown in excess Mg2+ had fewer nucleoids and possessed more FtsZ-rings per unit cell length, consistent with the increased division frequency. Remarkably, when shifting cells from unsupplemented to supplemented medium, more than half of the cell length decrease occurred in the first 10 min, consistent with rapid division onset. Relative to unsupplemented cells, cells growing at steady-state with excess Mg2+ showed an enhanced expression of a large number of SigB-regulated genes and the activation of the Fur, MntR, and Zur regulons. Thus, by manipulating the availability of one nutrient, we were able to uncouple the growth rate from the division frequency and identify transcriptional changes that suggest that cell division is accompanied by the general stress response and an enhanced demand to sequester and/or increase the uptake of iron, Mn2+, and Zn2+. IMPORTANCE The signals that cells use to trigger cell division are unknown. Although division is often considered intrinsic to the cell cycle, microorganisms can continue to grow and repeat rounds of DNA replication without dividing, indicating that cycles of division can be skipped. Here, we show that by manipulating a single nutrient, namely, Mg2+, cell division can be uncoupled from the growth rate. This finding can be applied to investigate the nature of the cell division signal(s).


Assuntos
Bacillus subtilis , Magnésio , Magnésio/metabolismo , Bacillus subtilis/metabolismo , Manganês/metabolismo , Transporte Biológico , Divisão Celular , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
5.
Proc Natl Acad Sci U S A ; 113(22): E3081-90, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27185935

RESUMO

Shank and SAPAP (synapse-associated protein 90/postsynaptic density-95-associated protein) are two highly abundant scaffold proteins that directly interact with each other to regulate excitatory synapse development and plasticity. Mutations of SAPAP, but not other reported Shank PDZ domain binders, share a significant overlap on behavioral abnormalities with the mutations of Shank both in patients and in animal models. The molecular mechanism governing the exquisite specificity of the Shank/SAPAP interaction is not clear, however. Here we report that a sequence preceding the canonical PDZ domain of Shank, together with the elongated PDZ BC loop, form another binding site for a sequence upstream of the SAPAP PDZ-binding motif, leading to a several hundred-fold increase in the affinity of the Shank/SAPAP interaction. We provide evidence that the specific interaction afforded by this newly identified site is required for Shank synaptic targeting and the Shank-induced synaptic activity increase. Our study provides a molecular explanation of how Shank and SAPAP dosage changes due to their gene copy number variations can contribute to different psychiatric disorders.


Assuntos
Hipocampo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Domínios PDZ/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Variações do Número de Cópias de DNA , Feminino , Hipocampo/citologia , Humanos , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Ligação Proteica , Conformação Proteica , Proteínas Associadas SAP90-PSD95 , Sinapses/fisiologia
6.
Bioresour Technol ; 136: 148-54, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23567675

RESUMO

Autotrophic domestication for short-cut nitrification (SCN) and microorganism immobilization was carried out in a lab-scale biological aerated filters (BAFs) system with activated sludge. Zeolite was chosen as fillings and modified to enlarge the specific surface and to remove toxic metal ions. After thirty-day domestication and immobilization, the NH4(+)-N removal capacity increased to 76.51 mg/g dry sludge (DS) and the ratio of NO2(-)-N converted from NH4(+)-N reached to 91.2% finally. The analysis of growth kinetics indicated that free ammonia should be the key factor for SCN. The abundance variation of nitrifiers, measured by qPCR, showed that AOB was enriched successfully and NOB was washed out. The results also showed that modified zeolite should be more beneficial to the specific immobilization of AOB than natural zeolite. The shift in the community structure of AOB during the domestication by DGGE profile was investigated.


Assuntos
Reatores Biológicos/microbiologia , Filtração/instrumentação , Nitrificação/efeitos dos fármacos , Esgotos/microbiologia , Zeolitas/farmacologia , Compostos de Amônio/metabolismo , Processos Autotróficos/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Contagem de Colônia Microbiana , Eletroforese em Gel de Gradiente Desnaturante , Genes Bacterianos/genética , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Dados de Sequência Molecular , Nitrogênio/metabolismo , Oxirredução/efeitos dos fármacos , Filogenia , RNA Ribossômico 16S/genética , Zeolitas/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa