Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38894189

RESUMO

Global positioning systems often fall short in dense forest environments, leading to increasing demand for innovative localization methods. Notably, existing methods suffer from the following limitations: (1) traditional localization frameworks necessitate several fixed anchors to estimate the locations of targets, which is difficult to satisfy in complex and uncertain forestry environments; (2) the uncertain environment severely decreases the quality of signal measurements and thus the localization accuracy. To cope with these limitations, this paper proposes a new method of trajectory localization for forestry environments with the assistance of UAVs. Based on the multi-agent DRL technique, the topology of UAVs is optimized in real-time to cater for high-accuracy target localization. Then, with the aid of RSS measurements from UAVs to the target, the least squares algorithm is used to estimate the location, which is more flexible and reliable than existing localization systems. Furthermore, a shared replay memory is incorporated into the proposed multi-agent DRL system, which can effectively enhance learning performance and efficiency. Simulation results show that the proposed method can obtain a flexible and high-accuracy localization system with the aid of UAVs, which exhibits better robustness against high-dimensional heterogeneous data and is suitable for forestry environments.

2.
Sensors (Basel) ; 22(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36501829

RESUMO

Distribution discrepancy is an intrinsic challenge in existing fingerprint-based indoor positioning system(s) (FIPS) due to real-time environmental variations; thus, the positioning model needs to be reconstructed frequently based on newly collected training data. However, it is expensive or impossible to collect adequate training samples to reconstruct the fingerprint database. Fortunately, transfer learning has proven to be an effective solution to mitigate the distribution discrepancy, enabling us to update the positioning model using newly collected training data in real time. However, in practical applications, traditional transfer learning algorithms no longer act well to feature space heterogeneity caused by different types or holding postures of fingerprint collection devices (such as smartphones). Moreover, current heterogeneous transfer methods typically require enough accurately labeled samples in the target domain, which is practically expensive and even unavailable. Aiming to solve these problems, a heterogeneous transfer learning framework based on co-occurrence data (HTL-CD) is proposed for FIPS, which can realize higher positioning accuracy and robustness against environmental changes without reconstructing the fingerprint database repeatedly. Specifically, the source domain samples are mapped into the feature space in the target domain, then the marginal and conditional distributions of the source and target samples are aligned in order to minimize the distribution divergence caused by collection device heterogeneity and environmental changes. Moreover, the utilized co-occurrence fingerprint data enables us to calculate correlation coefficients between heterogeneous samples without accurately labeled target samples. Furthermore, by resorting to the adopted correlation restriction mechanism, more valuable knowledge will be transferred to the target domain if the source samples are related to the target ones, which remarkably relieves the "negative transfer" issue. Real-world experimental performance implies that, even without accurately labeled samples in the target domain, the proposed HTL-CD can obtain at least 17.15% smaller average localization errors (ALEs) than existing transfer learning-based positioning methods, which further validates the effectiveness and superiority of our algorithm.


Assuntos
Algoritmos , Smartphone , Aprendizado de Máquina
3.
Sensors (Basel) ; 22(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36433311

RESUMO

Indoor signals are susceptible to NLOS propagation effects, multipath effects, and a dynamic environment, posing more challenges than outdoor signals despite decades of advancements in location services. In modern Wi-Fi networks that support both MIMO and OFDM techniques, Channel State Information (CSI) is now used as an enhanced wireless channel metric replacing the Wi-Fi received signal strength (RSS) fingerprinting method. The indoor multipath effects, however, make it less robust and stable. This study proposes a positive knowledge transfer-based heterogeneous data fusion method for representing the different scenarios of temporal variations in CSI-based fingerprint measurements generated in a complex indoor environment targeting indoor parking lots, while reducing the training calibration overhead. Extensive experiments were performed with real-world scenarios of the indoor parking phenomenon. Results revealed that the proposed algorithm proved to be an efficient algorithm with consistent positioning accuracy across all potential variations. In addition to improving indoor parking location accuracy, the proposed algorithm provides computationally robust and efficient location estimates in dynamic environments. A Cramer-Rao lower bound (CRLB) analysis was also used to estimate the lower bound of the parking lot location error variance under various temporal variation scenarios. Based on analytical derivations, we prove that the lower bound of the variance of the location estimator depends on the (i) angle of the base stations, (ii) number of base stations, (iii) distance between the target and the base station, djr (iv) correlation of the measurements, ρrjai and (v) signal propagation parameters σC and γ.


Assuntos
Algoritmos , Calibragem
4.
Sensors (Basel) ; 22(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35957393

RESUMO

This paper presents the application of heterogeneous transfer learning (HetTL) methods which consider hybrid feature selection to reduce the training calibration effort and the noise generated by fingerprint duplicates obtained from multiple Wi-Fi access points. The Cramer-Rao Lower Bound analysis (CRLB) was also applied to evaluate and estimate a lower limit for the variance of a parameter estimator used to analyze positioning performance. We developed two novel algorithms for feature selection in fingerprint-based indoor positioning problems (IPP) to enhance positioning performance in the target domain with the HetTL. The algorithms comprised two scenarios: (i) a principal component analysis-based approach (PCA-based) and (ii) a hybrid approach that takes both PCA and correlation effect analysis into account (hybrid scenario). Accordingly, a new feature vector was constructed by retaining only the most significant predictors, and the most efficient feature dimensions were also determined by using a hybrid-based approach. Experimental results showed that the hybrid-based proposed algorithm has the minimum mean absolute error. The CRLB analysis also showed that the number of Wi-Fi access points could affect the lower bound location estimation error; however, identifying the most significant predictors is an effective approach to improve positioning performance.

5.
Sensors (Basel) ; 22(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36501747

RESUMO

In an indoor positioning system (IPS), transfer learning (TL) methods are commonly used to predict the location of mobile devices under the assumption that all training instances of the target domain are given in advance. However, this assumption has been criticized for its shortcomings in dealing with the problem of signal distribution variations, especially in a dynamic indoor environment. The reasons are: collecting a sufficient number of training instances is costly, the training instances may arrive online, the feature spaces of the target and source domains may be different, and negative knowledge may be transferred in the case of a redundant source domain. In this work, we proposed an online heterogeneous transfer learning (OHetTLAL) algorithm for IPS-based RSS fingerprinting to improve the positioning performance in the target domain by fusing both source and target domain knowledge. The source domain was refined based on the target domain to avoid negative knowledge transfer. The co-occurrence measure of the feature spaces (Cmip) was used to derive the homogeneous new feature spaces, and the features with higher weight values were selected for training the classifier because they could positively affect the location prediction of the target. Thus, the objective function was minimized over the new feature spaces. Extensive experiments were conducted on two real-world scenarios of datasets, and the predictive power of the different modeling techniques were evaluated for predicting the location of a mobile device. The results have revealed that the proposed algorithm outperforms the state-of-the-art methods for fingerprint-based indoor positioning and is found robust to changing environments. Moreover, the proposed algorithm is not only resilient to fluctuating environments but also mitigates the model's overfitting problem.

6.
Front Psychiatry ; 12: 781673, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35058822

RESUMO

There have been numerous studies on the relationship between sleep and depression, as well as the relationship between sleep and depression, and heart rate variability (HRV), respectively. Even so, few studies have combined 24-h HRV analysis to study sleep quality and depressive symptoms. The purpose of this cross-sectional study was to investigate the relationship between depressed symptoms, sleep quality, and 24-h HRV in medical students. The particiants were all students at a medical university in Guangdong province, China. A total of 74 college students participated. They were asked to complete a questionnaire that included the Pittsburgh Sleep Quality Index (PSQI), the Beck Depression Inventory-II (BDI-II), the Positive and Negative Affect Scale (PANAS), and 24-h ECG monitoring. The results showed that 41.7% of the medical students had poor sleep quality, with higher levels of depressive symptoms and more negative emotions, and there was no difference in 24-h HRV indices between the low PSQI group and the high one. Correlation analysis showed that there was a significant relationship between sleep quality and depressive symptoms (r = 0.617), but the relationship between 24-h HRV indices and PSQI global scores, BDI scores were not significant. However, the correlation analysis of PSQI components and 24-h HRV showed that sleep disturbance was significantly negatively correlated with SDNN and LF in waking period (r = -0.285, -0.235), and with SDNN in sleeping period (r = -0.317). In general, the sleep disturbance in PSQI components can sensitively reflect the relationship between sleep quality and 24-h HRV of medical students. Individuals with higher sleep disturance may have lower SDNN during awake period and bedtime period, and lower LF in awake period. Twenty-four hour HRV has certain application value in clinical sleep quality monitoring, and its sensitivity and specificity in clinical application and daily life are still worth further investigation.

7.
J Magn Reson ; 204(1): 26-36, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20194039

RESUMO

This paper presents a method for the blind separation of Electron Paramagnetic Resonance (EPR) spectroscopy signals that can aid in the detection of free radicals in living organisms. Observed EPR signals are often mixtures of source signals that are approximately "sparse", with a small number of narrow segments of the signal much larger than the remaining parts. We develop a method to separate the sources through minimizing a p-norm-like diversity measure under some mild assumptions which are generally valid for EPR signals. Simulations demonstrate that the proposed method performs well on EPR signal separation, with better robustness to noise compared to other techniques.


Assuntos
Biopolímeros/análise , Misturas Complexas/análise , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Radicais Livres/análise , Modelos Químicos , Biopolímeros/química , Misturas Complexas/química , Simulação por Computador , Radicais Livres/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa