Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Cereb Cortex ; 33(12): 7311-7321, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36813465

RESUMO

Autism spectrum disorder (ASD) is characterized by highly structural heterogeneity. However, most previous studies analyzed between-group differences through a structural covariance network constructed based on the ASD group level, ignoring the effect of between-individual differences. We constructed the gray matter volume-based individual differential structural covariance network (IDSCN) using T1-weighted images of 207 children (ASD/healthy controls: 105/102). We analyzed structural heterogeneity of ASD and differences among ASD subtypes obtained by a K-means clustering analysis based on evidently different covariance edges relative to healthy controls. The relationship between the distortion coefficients (DCs) calculated at the whole-brain, intra- and interhemispheric levels and the clinical symptoms of ASD subtypes was then examined. Compared with the control group, ASD showed significantly altered structural covariance edges mainly involved in the frontal and subcortical regions. Given the IDSCN of ASD, we obtained 2 subtypes, and the positive DCs of the 2 ASD subtypes were significantly different. Intra- and interhemispheric positive and negative DCs can predict the severity of repetitive stereotyped behaviors in ASD subtypes 1 and 2, respectively. These findings highlight the crucial role of frontal and subcortical regions in the heterogeneity of ASD and the necessity of studying ASD from the perspective of individual differences.


Assuntos
Transtorno do Espectro Autista , Criança , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Córtex Cerebral
2.
Cereb Cortex ; 33(9): 5717-5726, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37128738

RESUMO

One of the remarkable characteristics of autism spectrum disorder (ASD) is the dysregulation of functional connectivity of the triple-network, which includes the salience network (SN), default mode network (DMN), and central executive network (CEN). However, there is little known about the segregation of the triple-network dynamics in ASD. This study used resting-state functional magnetic resonance imaging data including 105 ASD and 102 demographically-matched typical developing control (TC) children. We compared the dynamic time-varying triple-network segregation and triple-network functional connectivity states between ASD and TC groups, and examined the relationship between dynamic triple-network segregation alterations and clinical symptoms of ASD. The average dynamic network segregation value of the DMN with SN and the DMN with CEN in ASD was lower but the coefficient of variation (CV) of dynamic network segregation of the DMN with CEN was higher in ASD. Furthermore, partially reduced triple-network segregation associated with the DMN was found in connectivity states analysis of ASD. These abnormal average values and CV of dynamic network segregation predicted social communication deficits and restricted and repetitive behaviors in ASD. Our findings indicate abnormal dynamic time-varying triple-network segregation of ASD and highlight the crucial role of the triple-network in the neural mechanisms underlying ASD.


Assuntos
Transtorno do Espectro Autista , Encéfalo , Humanos , Criança , Imageamento por Ressonância Magnética/métodos , Vias Neurais , Comunicação , Mapeamento Encefálico/métodos
3.
Cereb Cortex ; 33(4): 1452-1461, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35396845

RESUMO

BACKGROUND: Schizophrenia originates early in neurodevelopment, underscoring the need to elaborate on anomalies in the still maturing brain of early-onset schizophrenia (EOS). METHODS: Gray matter (GM) volumes were evaluated in 94 antipsychotic-naïve first-episode EOS patients and 100 typically developing (TD) controls. The anatomical profiles of changing GM deficits in EOS were detected using 2-way analyses of variance with diagnosis and age as factors, and its timing was further charted using stage-specific group comparisons. Interregional relationships of GM alterations were established using structural covariance network analyses. RESULTS: Antagonistic interaction results suggested dynamic GM abnormalities of the left fusiform gyrus, inferior occipital gyrus, and lingual gyrus in EOS. These regions comprise a dominating part of the ventral stream, a ventral occipitotemporal (vOT) network engaged in early social information processing. GM abnormalities were mainly located in the vOT regions in childhood-onset patients, whereas in the rostral prefrontal cortex (rPFC) in adolescent-onset patients. Moreover, compared with TD controls, patients' GM synchronization with the ventral stream was disrupted in widespread high-order social perception regions including the rPFC and salience network. CONCLUSIONS: The current findings reveal age-related anatomical abnormalities of the social perception system in pediatric patients with schizophrenia.


Assuntos
Esquizofrenia , Humanos , Adolescente , Criança , Esquizofrenia/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Córtex Cerebral , Encéfalo
4.
Histopathology ; 83(2): 286-297, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37099413

RESUMO

AIMS: Fibroadipose vascular anomaly (FAVA) is a complex vascular malformation that is likely to be under-recognised. In this study we aimed to report the pathological features and somatic PIK3CA mutations associated with the most common clinicopathological features. METHODS AND RESULTS: Cases were identified by reviewing the lesions resected from patients with FAVA registered at our Haemangioma Surgery Centre and unusual intramuscular vascular anomalies in our pathology database. There were 23 males and 52 females, who ranged in age from 1 to 51 years. Most cases occurred in the lower extremities (n = 62). The majority of the lesions were intramuscular, with a few disrupting the overlying fascia and involving subcutaneous fat (19 of 75), and a minority of the cases had cutaneous vascular stains (13 of 75). Histopathologically, the lesion was composed of anomalous vascular components that were intertwined with mature adipocytic and dense fibrous tissues and vascular components with: (a) clusters of thin-walled channels, some with blood-filled nodules and others with thin walls resembling pulmonary alveoli; (b) numerous small vessels (arteries, veins and indeterminate channels) - proliferative small blood vessels were often mixed with adipose tissue; (c) larger abnormal venous channels usually irregularly and sometimes excessively muscularised; (d) lymphoid aggregates or lymphoplasmacytic aggregates were usually observed; and (e) lymphatic malformations were sometimes seen as minor elements. All patients had their lessons subjected to PCR, and 53 patients had somatic PIK3CA mutations (53 of 75). CONCLUSIONS: FAVA is a slow-flow vascular malformation with specific clinicopathological and molecular characteristics. Its recognition is fundamental for its clinical/prognostic implications and for targeted therapy.


Assuntos
Doenças Vasculares , Malformações Vasculares , Masculino , Feminino , Humanos , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Malformações Vasculares/genética , Malformações Vasculares/patologia , Tecido Adiposo/patologia , Classe I de Fosfatidilinositol 3-Quinases/genética
5.
Cerebrovasc Dis ; 52(6): 651-657, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37105137

RESUMO

INTRODUCTION: Previous preclinical studies reported that the level of serum EphrinA1 was associated with blood-brain barrier disruption; however, its role in predicting parenchymal hematoma (PH) after ischemic stroke is underexplored. We aimed to explore the association between the level of serum EphrinA1 and PH in patients with ischemic stroke. METHODS: Patients with ischemic stroke after onset from West China Hospital, Sichuan University, were prospectively enrolled between January 2017 and December 2019. The level of serum EphrinA1 at baseline was measured after admission. PH was diagnosed as hematoma within the infarct territory detected on the brain CT/MRI scans within 7 days after onset but not on the initial scan according to European Cooperative Acute Stroke Study (ECASS) III criteria. The association between the level of serum EphrinA1 and PH after ischemic stroke was assessed by multiple logistic regression analysis. RESULTS: A total of 667 patients were included in the final analysis. The mean age was 67.20 ± 14.31 years, and 57.87% (368/667) were males. Of the 667 patients, 65 (9.75%) patients had PH. The median of EphrinA1 on admission was 82.83 ng/mL (IQR, 70.11-93.75 ng/mL). Compared with patients without PH, those with PH had a higher level of serum EphrinA1 (p = 0.024). Patients were divided into 3 categories based on EphrinA1 tertiles (T1, <79.11 ng/mL, n = 223; T2, 79.11-93.75 ng/mL, n = 222; and T3, >93.75 ng/mL, n = 222). After adjusting for age, sex, atrial fibrillation, smoking, statins, antiplatelets, Trail of Org 10172 in Acute Stroke Treatment (TOAST) classification and National Institutes of Health Stroke Scale (NIHSS) score ≥15, patients in the second and third EphrinA1 tertiles showed a significant increase in PH compared with those in the lowest tertile (OR 2.44, 95% CI: 1.10-5.40, p = 0.028; OR 2.61, 95% CI: 1.19-5.74, p = 0.017, respectively). Additionally, adjusting for reperfusion therapy (thrombolysis and/or endovascular therapy), only patients in the highest group (tertile 3) had a significantly higher risk of PH compared to the lowest group (OR 2.30, 95% CI: 1.03-5.13, p = 0.042). CONCLUSION: Higher serum EphrinA1 is independently associated with a higher risk of PH after ischemic stroke. Future studies with larger sample sizes are needed to validate our findings and elucidate the potential role of EphrinA1 in PH.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/terapia , Hematoma/etiologia , AVC Isquêmico/tratamento farmacológico , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/complicações , Terapia Trombolítica/efeitos adversos , Resultado do Tratamento
6.
Environ Sci Technol ; 57(43): 16641-16652, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37734047

RESUMO

High-performance zeolite-supported noble metal catalysts with low loading and high dispersion of active components are the most promising materials for achieving the complete oxidation of formaldehyde (HCHO) at room temperature. In this work, palladium nanoparticles (Pd NPs) with different sizes were successfully encapsulated inside the silicalite-1 (S-1) zeolite framework by using diverse stabling ligands via the one-pot method. Thereafter, the rule on selecting the coordinative ligands for palladium was clarified: more N atoms, a short carbon chain, a smaller branch chain, and bidentate coordination are characteristics of an ideal ligand. Accordingly, the best-performing 0.2Pd@S-1(Ethylenediamine) catalyst exhibited outstanding performance for HCHO oxidation, achieving 100% conversion even at room temperature. High-resolution high-angle annular dark-field scanning transmission electron microscopy (HR HAADF-STEM) and density functional theory (DFT) calculations indicate that the chelate is formed by complexation of Pd2+ ions with ethylenediamine, displaying the smallest spatial site resistance simultaneously with the zeolite synthesis, resulting in Pd located mostly within the 5-membered ring (5-MR) channels of S-1 after calcination, thus limiting the growth of Pd clusters and promoting their dispersion.


Assuntos
Nanopartículas Metálicas , Zeolitas , Paládio , Temperatura , Ligantes , Formaldeído , Etilenodiaminas
7.
Cereb Cortex ; 32(6): 1307-1317, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34416760

RESUMO

Literatures have reported considerable heterogeneity with atypical functional connectivity (FC) pattern of psychiatric disorders. However, traditional statistical methods are hard to explore this heterogeneity pattern. We proposed a "brain dimension" method to describe the atypical FC patterns of major depressive disorder and bipolar disorder (BD). The approach was firstly applied to a simulation dataset. It was then utilized to a real resting-state functional magnetic resonance imaging dataset of 47 individuals with major depressive disorder, 32 individuals with BD, and 52 well matched health controls. Our method showed a better ability to extract the FC dimensions than traditional methods. The results of the real dataset revealed atypical FC dimensions for major depressive disorder and BD. Especially, an atypical FC dimension which exhibited decreased FC strength of thalamus and basal ganglia was found with higher severity level of individuals with BD than the ones with major depressive disorder. This study provided a novel "brain dimension" method to view the atypical FC patterns of major depressive disorder and BD and revealed shared and specific atypical FC patterns between major depressive disorder and BD.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Transtorno Bipolar/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Depressão , Transtorno Depressivo Maior/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos
8.
Phytother Res ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36943416

RESUMO

Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone secreted by K cells in the small intestine and is considered an obesity-promoting factor. In this study, we systematically investigated the anti-obesity effects of intragastric safflower yellow (SY)/hydroxysafflor yellow A (HSYA) and the underlying mechanism for the first time. Our results showed that intragastric SY/HSYA, rather than an intraperitoneal injection, notably decreased serum GIP levels and GIP staining in the small intestine in diet-induced obese (DIO) mice. Moreover, intragastric SY/HSYA was also first found to significantly suppress GIP receptor (GIPR) signaling in both the hypothalamus and subcutaneous White adipose tissue. Our study is the first to show that intragastric SY/HSYA obviously reduced food intake and body weight gain in leptin sensitivity experiments and decreased serum leptin levels in DIO mice. Further experiments demonstrated that SY treatment also significantly reduced leptin levels, whereas the inhibitory effect of SY on leptin levels was reversed by activating GIPR in 3 T3-L1 adipocytes. In addition, intragastric SY/HSYA had already significantly reduced serum GIP levels and GIPR expression before the serum leptin levels were notably changed in high-fat-diet-fed mice. These findings suggested that intragastric SY/HSYA may alleviate diet-induced obesity in mice by ameliorating hyperleptinemia via dual inhibition of the GIP-GIPR axis.

9.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068935

RESUMO

While purified protein derivative (PPD) is commonly used as skin diagnostic reagent for tuberculosis (TB) infection, it cannot distinguish effectively Bacillus Calmette-Guérin (BCG) vaccination from Mycobacterium tuberculosis (MTB) complex and nontuberculous mycobacteria infection. The new skin reagent ESAT6-CFP10 (EC) has favorable sensitivity and specificity, which can overcome limitations associated with PPD. At present, EC skin test reactions are mainly characterized by erythema, while PPD mainly causes induration. We conducted a comparative study on the potential differences between EC-induced erythema and PPD-induced induration using a guinea pig model. The size of EC-dependent erythema was similar to that of PPD-induced induration, and an inflammatory response characterized by the infiltration of monocytes, macrophages and lymphocytes, as well as tissue damage, appeared at the injection site. The lymphocytes included CD4+ T and CD8+ T cells, which released IFN-γ as the main cytokine. Both EC erythema and PPD induration could lead to increased levels of acute-phase proteins, and the differential pathways were similar, thus indicating that the main induced immune pathways were similar. The above results indicated that erythema produced by EC could generate the main delayed-type hypersensitivity (DTH) response characteristic of PPD induration, thereby suggesting that erythema might also have a certain diagnostic significance and provide a possible theoretical basis for its use as a diagnostic indicator for detecting MTB infection.


Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Animais , Cobaias , Proteínas Recombinantes de Fusão/genética , Tuberculina , Linfócitos T CD8-Positivos , Tuberculose/diagnóstico , Eritema , Antígenos de Bactérias
10.
J Environ Sci (China) ; 125: 135-147, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375899

RESUMO

Pt catalysts with nitrogen-doped graphene oxide (GO) as support and CeO2 as promoter were prepared by impregnation method, and their catalytic oxidation of formaldehyde (HCHO) at room temperature was tested. The Pt-CeO2/N-rGO (reduced GO) with a mass fraction of 0.7% Pt and 0.8% CeO2 exhibited an excellent catalytic performance with the 100% conversion of HCHO at room temperature. Physicochemical characterization demonstrated that nitrogen-doping greatly increased the defect degree and the specific surface area of GO, enhanced the dispersion of Pt and promoted more zero-valent Pt. The synergistic effect between CeO2 and Pt was also beneficial to the dispersion of Pt. Nitrogen-doping promoted the production of more Ce3+ ions, generating more oxygen vacancies, which was conducive to O2 adsorption. As a result, the catalyst exhibited enhanced redox properties, leading to the best catalytic activity. Finally, an attempt to propose the reaction mechanism of HCHO oxidation has been made.

11.
Infect Immun ; 90(1): e0035221, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34694917

RESUMO

Pneumococcal disease is a serious public health problem worldwide and an important cause of morbidity and mortality among children and adults in developing countries. Although vaccination is among the most effective approaches to prevent and control pneumococcal diseases, approved vaccines have limited protective effects. We developed a pneumococcal protein-polysaccharide conjugate vaccine that is mediated by the noncovalent interaction between biotin and streptavidin. Biotinylated type IV capsular polysaccharide was incubated with a fusion protein containing core streptavidin and Streptococcus pneumoniae virulence protein and relied on the noncovalent interaction between biotin and streptavidin to prepare the protein-polysaccharide conjugate vaccine. Analysis of vaccine efficacy revealed that mice immunized with the protein-polysaccharide conjugate vaccine produced antibodies with high potency against virulence proteins and polysaccharide antigens and were able to induce Th1 and Th17 responses. The antibodies identified using an opsonophagocytic assay were capable of activating the complement system and promoting pathogen elimination by phagocytes. Additionally, mice immunized with the protein-polysaccharide conjugate vaccine and then infected with a lethal dose of Streptococcus pneumoniae demonstrated induced protective immunity. The data indicated that the pneumococcal protein-polysaccharide (biotin-streptavidin) conjugate vaccine demonstrated broad-spectrum activity applicable to a wide range of people and ease of direct coupling between protein and polysaccharide. These findings provide further evidence for the application of biotin-streptavidin in S. pneumoniae vaccines.


Assuntos
Biotina , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/imunologia , Estreptavidina , Streptococcus pneumoniae/imunologia , Vacinas Conjugadas/imunologia , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Cromatografia Líquida de Alta Pressão , Humanos , Imunidade Celular , Imunidade Humoral , Imunização , Imunogenicidade da Vacina , Análise Espectral , Desenvolvimento de Vacinas
12.
Horm Metab Res ; 54(7): 458-471, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35512849

RESUMO

Aim To determine the antiobesity effect and safety of glucagon-like peptide-1 receptor agonist (GLP-1RA) including liraglutide, exenatide and semaglutide treatment in overweight/obese patients without diabetes. The random-effect model was used to pool data extracted from included literatures. The weighted mean difference (WMD), odds ratio and 95% confidence interval (CI) were used to present the meta-analysis results (PROSPERO registration number: CRD 42020173199). The sources of intertrial heterogeneity, bias and the robustness of results were evaluated by subgroup analysis, sensitivity analysis and regression analysis, respectively. A total of 24 RCTs were recruited in the present analysis which included 5867 patients. The results showed that the treatment of overweight/obese patients without diabetes with GLP-1RAs including liraglutide, exenatide and semaglutide significantly achieved greater weight loss than placebo [WMD=-5.39, 95% CI (-6.82, -3.96)] and metformin [WMD=-5.46, 95% CI (-5.87, -5.05)]. The subgroup analysis showed that semaglutide displayed the most obvious antiobesity effect in terms of weight loss, the reduction of body mass index (BMI) and waist circumference (WC). However, GLP-1RAs treatments had more gastrointestinal adverse events (such as nausea and vomiting) than placebo and Met. The subgroup analysis also represented that semaglutide displayed the lowest risk of gastrointestinal adverse events among three kinds of GLP-1RAs. Our meta-analysis demonstrated that GLP-1RA had a superior antiobesity effect than placebo/Met in overweight/obese patients without diabetes in terms of body weight, BMI, and WC, especially for semaglutide, which had more obvious antiobesity effect and lower GI adverse events than liraglutide and exenatide.


Assuntos
Fármacos Antiobesidade , Exenatida , Receptor do Peptídeo Semelhante ao Glucagon 1 , Peptídeos Semelhantes ao Glucagon , Hipoglicemiantes , Liraglutida , Obesidade , Fármacos Antiobesidade/efeitos adversos , Fármacos Antiobesidade/uso terapêutico , Exenatida/efeitos adversos , Exenatida/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Peptídeos Semelhantes ao Glucagon/efeitos adversos , Peptídeos Semelhantes ao Glucagon/uso terapêutico , Humanos , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/uso terapêutico , Liraglutida/efeitos adversos , Liraglutida/uso terapêutico , Obesidade/tratamento farmacológico , Redução de Peso
13.
Cereb Cortex ; 31(8): 3899-3910, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33791779

RESUMO

Much recent attention has been directed toward elucidating the structure of social interaction-communication dimensions and whether and how these symptom dimensions coalesce with each other in individuals with autism spectrum disorder (ASD). However, the underlying neurobiological basis of these symptom dimensions is unknown, especially the association of social interaction and communication dimensions with brain networks. Here, we proposed a method of whole-brain network-based regression to identify the functional networks linked to these symptom dimensions in a large sample of children with ASD. Connectome-based predictive modeling (CPM) was established to explore neurobiological evidence that supports the merging of communication and social interaction deficits into one symptom dimension (social/communication deficits). Results showed that the default mode network plays a core role in communication and social interaction dimensions. A primary sensory perceptual network mainly contributed to communication deficits, and high-level cognitive networks mainly contributed to social interaction deficits. CPM revealed that the functional networks associated with these symptom dimensions can predict the merged dimension of social/communication deficits. These findings delineate a link between brain functional networks and symptom dimensions for social interaction and communication and further provide neurobiological evidence supporting the merging of communication and social interaction deficits into one symptom dimension.


Assuntos
Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/psicologia , Comunicação , Rede Nervosa/fisiopatologia , Comportamento Social , Transtorno do Espectro Autista/fisiopatologia , Mapeamento Encefálico , Criança , Conectoma , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Modelos Neurológicos , Rede Nervosa/diagnóstico por imagem , Vias Neurais , Testes Neuropsicológicos , Interação Social
14.
Cereb Cortex ; 31(3): 1500-1510, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33123725

RESUMO

Autism spectrum disorder is an early-onset neurodevelopmental condition. This study aimed to investigate the progressive structural alterations in the autistic brain during early childhood. Structural magnetic resonance imaging scans were examined in a cross-sectional sample of 67 autistic children and 63 demographically matched typically developing (TD) children, aged 2-7 years. Voxel-based morphometry and a general linear model were used to ascertain the effects of diagnosis, age, and a diagnosis-by-age interaction on the gray matter volume. Causal structural covariance network analysis was performed to map the interregional influences of brain structural alterations with increasing age. The autism group showed spatially distributed increases in gray matter volume when controlling for age-related effects, compared with TD children. A significant diagnosis-by-age interaction effect was observed in the fusiform face area (FFA, Fpeak = 13.57) and cerebellum/vermis (Fpeak = 12.73). Compared with TD children, the gray matter development of the FFA in autism displayed altered influences on that of the social brain network regions (false discovery rate corrected, P < 0.05). Our findings indicate the atypical neurodevelopment of the FFA in the autistic brain during early childhood and highlight altered developmental effects of this region on the social brain network.


Assuntos
Transtorno do Espectro Autista/patologia , Mapeamento Encefálico/métodos , Encéfalo/patologia , Substância Cinzenta/patologia , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino
15.
Endocr J ; 69(10): 1233-1244, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35705299

RESUMO

Liraglutide has been approved for the treatment of obesity in the past few years. Both oxidative stress and leptin resistance are the critical drivers of obesity. The present study investigated the mechanism of liraglutide protection against obesity by ameliorating leptin resistance and oxidative stress. Male C57BL/6J mice were fed a high-fat diet (HFD) and subcutaneously injected with 200 µg/kg/d liraglutide for 20 weeks. Body weight, fat mass, serum levels of leptin, insulin, and superoxide dismutase (SOD) activities were measured. In addition, glucose and insulin tolerance tests were performed. The expressions of leptin, its signaling genes, and antioxidant enzymes were detected using RT-qPCR and western blot methods in liver and white adipose tissue (WAT) of mice. The results depicted that liraglutide treatment significantly slowed weight gain of body, reduced the fat mass, ameliorated glucose and lipid metabolism, and hepatic steatosis in HFD-fed obese mice. Further study demonstrated that liraglutide treatment resulted in decreased serum levels and the transcript levels of leptin as well as leptin signaling inhibitory regulators. However, it increased leptin receptor expression and the phosphorylation of signal transducer and activator of transcription 3 (p-STAT3) in WAT (p < 0.05). In addition, the antioxidant enzyme expression was elevated in both liver and WAT of liraglutide-treated mice (p < 0.05). In conclusion, liraglutide conspicuously prevented obesity and ameliorated glucose and lipid metabolism in obese mice through a novel mechanism that improves peripheral leptin resistance in WAT and enhance the antioxidant enzyme expression in both liver and WAT.


Assuntos
Leptina , Liraglutida , Obesidade , Animais , Masculino , Camundongos , Tecido Adiposo/metabolismo , Antioxidantes/metabolismo , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo
16.
Hum Brain Mapp ; 42(10): 3282-3294, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33934442

RESUMO

Individual-based morphological brain networks built from T1-weighted magnetic resonance imaging (MRI) reflect synchronous maturation intensities between anatomical regions at the individual level. Autism spectrum disorder (ASD) is a socio-cognitive and neurodevelopmental disorder with high neuroanatomical heterogeneity, but the specific patterns of morphological networks in ASD remain largely unexplored at the individual level. In this study, individual-based morphological networks were constructed by using high-resolution structural MRI data from 40 young children with ASD (age range: 2-8 years) and 38 age-, gender-, and handedness-matched typically developing children (TDC). Measurements were recorded as threefold. Results showed that compared with TDC, young children with ASD exhibited lower values of small-worldness (i.e., σ) of individual-level morphological brain networks, increased morphological connectivity in cortico-striatum-thalamic-cortical (CSTC) circuitry, and decreased morphological connectivity in the cortico-cortical network. In addition, morphological connectivity abnormalities can predict the severity of social communication deficits in young children with ASD, thus confirming an associational impact at the behavioral level. These findings suggest that the morphological brain network in the autistic developmental brain is inefficient in segregating and distributing information. The results also highlight the crucial role of abnormal morphological connectivity patterns in the socio-cognitive deficits of ASD and support the possible use of the aberrant developmental patterns of morphological brain networks in revealing new clinically-relevant biomarkers for ASD.


Assuntos
Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/fisiopatologia , Cérebro/patologia , Rede Nervosa/patologia , Tálamo/patologia , Transtorno do Espectro Autista/diagnóstico por imagem , Cérebro/diagnóstico por imagem , Criança , Pré-Escolar , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Tálamo/diagnóstico por imagem
17.
J Med Virol ; 93(4): 2493-2498, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33415760

RESUMO

The coronavirus disease 2019 (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began in December 2019 and was basically under control in April 2020 in Wuhan. To explore the impact of intervention measures on the COVID-19 epidemic, we established susceptible-exposed-infectious-recovered (SEIR) models to predict the epidemic characteristics of COVID-19 at four different phases (beginning, outbreak, recession, and plateau) from January 1st to March 30th, 2020. We found that the infection rate rapidly grew up to 0.3647 at Phase II from 0.1100 at Phase I and went down to 0.0600 and 0.0006 at Phase III and IV, respectively. The reproduction numbers of COVID-19 were 10.7843, 13.8144, 1.4815, and 0.0137 at Phase I, II, III, and IV, respectively. These results suggest that intensive interventions, including compulsory home isolation and rapid improvement of medical resources, can effectively reduce the COVID-19 transmission. Furthermore, the predicted COVID-19 epidemic trend by our models was close to the actual epidemic trend in Wuhan. Our phase-based SEIR models demonstrate that intensive intervention measures can effectively control COVID-19 spread even without specific medicines and vaccines against this disease.


Assuntos
COVID-19/epidemiologia , China/epidemiologia , Surtos de Doenças , Suscetibilidade a Doenças , Epidemias , Humanos , Modelos Estatísticos , Mortalidade , Estudos Retrospectivos , SARS-CoV-2/isolamento & purificação
18.
Protein Expr Purif ; 178: 105782, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33122039

RESUMO

Streptococcus pneumoniae is a gram-positive bacterial pathogen causing invasive pneumonia, meningitis, otitis media, and bacteremia. Owing to the current pitfalls of polysaccharide and polysaccharide-conjugate vaccines, protein vaccines are considered promising candidates against pneumonia. Pneumococcal surface protein A (PspA) and pneumococcal surface adhesin A (PsaA) are virulence proteins showing good immunogenicity and protective effects against S. pneumoniae strains in mice. In this study, we expressed the fusion protein PsaA-PspA, which consists of PsaA and the N-terminal region of PspA family 1 and 2, in Escherichia coli. We describe a novel and effective method to purify PsaA-PspA using hydroxyapatite and two-step chromatography. After determining the optimal induction conditions and a series of purification steps, we obtained PsaA-PspA fusion protein with over 95% purity at a final yield of 22.44% from the starting cell lysate. The molecular weight of PsaA-PspA was approximately 83.6 kDa and its secondary structure was evaluated by circular dichroism. Immunization with the purified protein induced high levels of IgG antibodies in mice. Collectively, these results demonstrate that our purification method can effectively produce high-purity PsaA-PspA fusion protein with biological activity and chemical integrity, which can be widely applied to the purification of other PspA subclass proteins.


Assuntos
Adesinas Bacterianas , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias , Imunoglobulina G/imunologia , Proteínas Recombinantes de Fusão , Streptococcus pneumoniae/imunologia , Adesinas Bacterianas/química , Adesinas Bacterianas/imunologia , Adesinas Bacterianas/isolamento & purificação , Adesinas Bacterianas/farmacologia , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/farmacologia , Escherichia coli , Feminino , Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/farmacologia
19.
Cereb Cortex ; 30(9): 5028-5037, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32377684

RESUMO

Accumulating neuroimaging evidence shows that age estimation obtained from brain connectomics reflects the level of brain maturation along with neural development. It is well known that autism spectrum disorder (ASD) alters neurodevelopmental trajectories of brain connectomics, but the precise relationship between chronological age (ChA) and brain connectome age (BCA) during development in ASD has not been addressed. This study uses neuroimaging data collected from 50 individuals with ASD and 47 age- and gender-matched typically developing controls (TDCs; age range: 5-18 years). Both functional and structural connectomics were assessed using resting-state functional magnetic resonance imaging and diffusion tensor imaging data from the Autism Brain Imaging Data Exchange repository. For each participant, BCA was estimated from structure-function connectomics through linear support vector regression. We found that BCA matched well with ChA in TDC children and adolescents, but not in ASD. In particular, our findings revealed that individuals with ASD exhibited accelerated brain maturation in youth, followed by a delay of brain development starting at preadolescence. Our results highlight the critical role of BCA in understanding aberrant developmental trajectories in ASD and provide the new insights into the pathophysiological mechanisms of this disorder.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Encéfalo/fisiopatologia , Conectoma , Adolescente , Criança , Pré-Escolar , Imagem de Tensor de Difusão , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino
20.
Hum Brain Mapp ; 41(2): 419-428, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31600014

RESUMO

Emerging evidence has associated autism spectrum disorder (ASD) with static functional connectivity abnormalities between multiple brain regions. However, the temporal dynamics of intra- and interhemispheric functional connectivity patterns remain unknown in ASD. Resting-state functional magnetic resonance imaging data were analyzed for 105 ASD and 102 demographically matched typically developing control (TC) children (age range: 7-12 years) available from the Autism Brain Imaging Data Exchange database. Whole-brain functional connectivity was decomposed into ipsilateral and contralateral functional connectivity, and sliding-window analysis was utilized to capture the intra- and interhemispheric dynamic functional connectivity density (dFCD) patterns. The temporal variability of the functional connectivity dynamics was further quantified using the standard deviation (SD) of intra- and interhemispheric dFCD across time. Finally, a support vector regression model was constructed to assess the relationship between abnormal dFCD variance and autism symptom severity. Both intra- and interhemispheric comparisons showed increased dFCD variability in the anterior cingulate cortex/medial prefrontal cortex and decreased variability in the fusiform gyrus/inferior temporal gyrus in autistic children compared with TC children. Autistic children additionally showed lower intrahemispheric dFCD variability in sensorimotor regions including the precentral/postcentral gyrus. Moreover, aberrant temporal variability of the contralateral dFCD predicted the severity of social communication impairments in autistic children. These findings demonstrate altered temporal dynamics of the intra- and interhemispheric functional connectivity in brain regions incorporating social brain network of ASD, and highlight the potential role of abnormal interhemispheric communication dynamics in neural substrates underlying impaired social processing in ASD.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Córtex Cerebral/fisiopatologia , Conectoma , Rede Nervosa/fisiopatologia , Percepção Social , Habilidades Sociais , Transtorno do Espectro Autista/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Criança , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa