Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 18(17): 3328-3334, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35385566

RESUMO

In this work, we investigate the three-dimensional lattice deformation of blue phase (BP) liquid crystals under electrostriction. Using the in situ measurement of light diffraction signals from a twinned crystal, we propose a method to experimentally determine the lattice constants of BPs under an electric field; the overlap angle in the diffraction pattern of BP twinning domains gives the ratio of lattice constants in the lateral direction of the field, which can be analyzed together with the Bragg reflection peak wavelength along the field direction to yield three-dimensional lattice constants. The obtained values are confirmed to show good agreement with the diffraction data measured from a converging monochromatic light. Furthermore, by applying the method to BPs in a thin cell and specifying the transitions of azimuthal orientation, three-dimensional lattice deformation of BP I crystals and evolution of the azimuthal orientation are clarified under the electrostriction. Results reveal that the BPs confined to thin films undergo discrete elongation along the field direction and the BP I crystal undergoes larger lattice deformation in the field-perpendicular directions than that along the field. Our work allows a relatively easy determination of three-dimensional lattice constants of deformed BP crystals under an electric field, and the obtained results provide important insights into the understanding of the electrostriction behaviour of BPs towards improvement of the electro-optical performance of BP devices in practical applications.

2.
Opt Express ; 29(23): 37464-37475, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808817

RESUMO

A four-mode 2D/3D switchable display using a 1D/2D convertible liquid crystal (LC) lens array is proposed in this paper. The LC lens array is composed of two orthogonal LC lens arrays, with a λ/2 film in the middle to rotate the polarization by 90°. Based on the LC lens array, a four-mode 2D/3D switchable display is realized, which is switchable between the turn-off and turn-on states: when the operating voltage V1 = 0, V2 = 0, the display operates in mode I, which is 2D display; when the operating voltage V1 = 0, V2 = 0, the display operates in mode II, and the 3D display effect is in x direction; when the operating voltage V1 = 0, V2 = 0, the display operates in mode III, and the 3D display effect is in y direction; when the operating voltage V1 = 0, V2 = 0, the display operates in mode IV, the 3D display effect is in x-y plane. Experimental results indicate that the LC lens array has simple fabrication process, low operating voltage (∼5.4V), and short focal length. Moreover, based on the designed LC lens array, the 2D/3D switchable display shows no moiré pattern.

3.
Opt Express ; 26(7): 9254-9262, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29715879

RESUMO

A liquid crystal (LC) lens array with high light control power and a large aperture using a composited alignment layer is proposed. In our design, the alignment layer is not only used for getting a uniform arrangement of LC molecule, but also for getting a lens-like refractive index distribution in the LC layer when a voltage is applied. Through simple technology processes, a tunable focal length LC lens array with a millimeter scale diameter can be achieved. Furthermore, the maximum phase difference of the proposed LC lens array can achieve 105.38π. So, the proposed LC lens array has a high light control power.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa