Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Fish Shellfish Immunol ; 150: 109648, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777253

RESUMO

Laminin receptor (LR), which mediating cell adhesion to the extracellular matrix, plays a crucial role in cell signaling and regulatory functions. In the present study, a laminin receptor gene (SpLR) was cloned and characterized from the mud crab (Scylla paramamosain). The full length of SpLR contained an open reading frame (ORF) of 960 bp encoding 319 amino acids, a 5' untranslated region (UTR) of 66 bp and a 3' UTR of 49 bp. The predicted protein comprised two Ribosomal-S2 domains and a 40S-SA-C domain. The mRNA of SpLR was highly expressed in the gill, followed by the hepatopancreas. The expression of SpLR was up-regulated after mud crab dicistrovirus-1(MCDV-1) infection. Knocking down SpLR in vivo by RNA interference significantly down-regulated the expression of the immune genes SpJAK, SpSTAT, SpToll1, SpALF1 and SpALF5. This study shown that the expression level of SpToll1 and SpCAM in SpLR-interfered group significantly increased after MCDV-1 infection. Moreover, silencing of SpLR in vivo decreased the MCDV-1 replication and increased the survival rate of mud crabs after MCDV-1 infection. These findings collectively suggest a pivotal role for SpLR in the mud crab's response to MCDV-1 infection. By influencing the expression of critical innate immune factors and impacting viral replication dynamics, SpLR emerges as a key player in the intricate host-pathogen interaction, providing valuable insights into the molecular mechanisms underlying MCDV-1 pathogenesis in mud crabs.


Assuntos
Sequência de Aminoácidos , Proteínas de Artrópodes , Braquiúros , Regulação da Expressão Gênica , Imunidade Inata , Filogenia , Receptores de Laminina , Alinhamento de Sequência , Animais , Braquiúros/genética , Braquiúros/imunologia , Receptores de Laminina/genética , Receptores de Laminina/imunologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/química , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Alinhamento de Sequência/veterinária , Perfilação da Expressão Gênica/veterinária , Sequência de Bases
2.
Fish Shellfish Immunol ; 154: 109872, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39244075

RESUMO

Scylla paramamosain, an economically significant crab, is widely cultivated worldwide. In recent years, S. paramamosain has faced a serious threat from viral diseases due to the expansion of culture scale and increased culture density. Among these, mud crab dicistrovirus-1 (MCDV-1) stands out as highly pathogenic, presenting substantial challenges to the healthy development of mud crab aquaculture. Therefore, a comprehensive understanding of the mud crab immune response to MCDV-1 infection is imperative for devising effective disease prevention strategies. In this study, transcriptomic analyses were conducted on the hepatopancreas of mud crabs infected with MCDV-1. The findings revealed a total of 5139 differentially expressed genes (DEGs) between healthy and MCDV-1 infected mud crabs, including 3327 upregulated and 1812 downregulated DEGs. Further analysis showed that mud crabs resist MCDV-1 infection by activating humoral immune-related pathways, including the MAPK signaling pathway, MAPK signaling pathway-fly, and Toll and Imd signaling pathway. In contrast, MCDV-1 infection triggers host metabolic disorders. Several immune-related vitamin metabolism pathways (ascorbate and aldarate metabolism, retinol metabolism, and nicotinate and nicotinamide metabolism) were significantly inhibited, which may create favorable conditions for the virus's self-replication. Notably, endocytosis emerged as significantly upregulated both in GO terms and KEGG pathways, with several viral endocytosis-related pathways showing significant activation. PPI network analysis identified 9 hub genes associated with viral endocytosis within the endocytosis. Subsequent GeneMANIA analysis confirmed the association of these hub genes with viral endocytosis. Both transcriptome data and qPCR analysis revealed a significant upregulation of these hub genes post MCDV-1 infection, suggesting MCDV-1 may use viral endocytosis to enter cells and facilitate replication. This study represents the first comprehensive report on the transcriptomic profile of mud crab hepatopancreas response to MCDV-1 infection. Future investigations should focus on elucidating the mechanisms through which MCDV-1 enters cells via endocytosis, as this may holds critical implications for the development of vaccine targets.

3.
Cell Mol Biol Lett ; 29(1): 60, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671354

RESUMO

Cancer therapeutic resistance remains a significant challenge in the pursuit of effective treatment strategies. Circular RNAs (circRNAs), a class of non-coding RNAs, have recently emerged as key regulators of various biological processes, including cancer progression and drug resistance. This review highlights the emerging role of circRNAs-mediated autophagy in cancer therapeutic resistance, a cellular process that plays a dual role in cancer by promoting both cell survival and death. Increasing evidence suggests that circRNAs can modulate autophagy pathways, thereby influencing the response of cancer cells to therapeutic agents. In this context, the intricate interplay between circRNAs, autophagy, and therapeutic resistance is explored. Various mechanisms are discussed through which circRNAs can impact autophagy, including direct interactions with autophagy-related genes, modulation of signaling pathways, and cross-talk with other non-coding RNAs. Furthermore, the review delves into specific examples of how circRNA-mediated autophagy regulation can contribute to resistance against chemotherapy and radiotherapy. Understanding these intricate molecular interactions provides valuable insights into potential strategies for overcoming therapeutic resistance in cancer. Exploiting circRNAs as therapeutic targets or utilizing them as diagnostic and predictive biomarkers opens new avenues for developing personalized treatment approaches. In summary, this review underscores the importance of circRNA-mediated autophagy in cancer therapeutic resistance and proposes future directions for research in this exciting and rapidly evolving field.


Assuntos
Autofagia , Resistencia a Medicamentos Antineoplásicos , Neoplasias , RNA Circular , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Autofagia/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/genética , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Animais , Transdução de Sinais/genética , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
4.
Fish Shellfish Immunol ; 136: 108729, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37011739

RESUMO

The transcription factor Nrf2 plays vital roles in detoxification and antioxidant enzymes against oxidative stress. However, the function of Nrf2 in crustaceans is not well studied. In this study, a novel Nrf2 gene from the mud crab (Sp-Nrf2) was identified. It was encoded 245 amino acids. Sp-Nrf2 expression was ubiquitously expressed in all tested tissues, with the highest expression level in the gill. Sp-Nrf2 protein was mainly located in the nucleus. The expression levels of Sp-Nrf2, and antioxidant-related genes (HO-1 and NQO-1) were induced after Vibrio parahaemolyticus infection, indicating that Nrf2 signaling pathway was involved in the responses to bacterial infection. Over-expression of Sp-Nrf2 could improve cell viability after H2O2 exposure, indicating that Sp-Nrf2 might relieve oxidative stress. Silencing of Sp-Nrf2 in vivo decreased HO-1 and NQO-1 expression. Moreover, knocking down Sp-Nrf2 in vivo can increase malondialdehyde content and the mortality of mud crabs after V. parahaemolyticus infection. Our results indicated that Nrf2 signaling pathway played a significant role in immune response against bacterial infection.


Assuntos
Infecções Bacterianas , Braquiúros , Enteropatias , Vibrioses , Vibrio parahaemolyticus , Animais , Vibrio parahaemolyticus/fisiologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Vibrioses/microbiologia , Transdução de Sinais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Filogenia , Imunidade Inata
5.
Fish Shellfish Immunol ; 139: 108917, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37355218

RESUMO

The Hippo-Yki signaling pathway plays a crucial role in numerous biological processes. Previous studies have demonstrated the significance of signal transduction components of the Hippo pathway in the immune response of shrimp. In this study, the downstream transcription factor of Hippo signaling, Scalloped, was analyzed in the context of Vibrio parahaemolyticus infection in Pacific white shrimp, Penaeus vannamei. Upon bacterial and fungal infections, the expression of Scalloped was upregulated in hemocytes. Scalloped was found to localize in the nucleus and interact with the Hippo pathway downstream transcriptional co-activator Yki. With the assistance of Yki, Scalloped activated the promoter of Cactus, a cytoplasmic inhibitor of the NF-κB pathway, leading to the inhibition of the nuclear translocation of the NF-κB family member Dorsal in shrimp. By inhibiting the Dorsal pathway, Scalloped reduced the expression of immune functional proteins and negatively regulated the immune response against bacterial infection in shrimp. RNAi-mediated silencing of Scalloped significantly enhanced the survival rate of V. parahaemolyticus-infected shrimp and reduced the bacterial load in tissues. These findings demonstrate the potential of Scalloped as a therapeutic target for vibriosis in crustaceans and contribute to our understanding of the shrimp's antibacterial defense and the functional roles of Hippo signaling in animal immunity.


Assuntos
Penaeidae , Vibrioses , Vibrio parahaemolyticus , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , NF-kappa B/metabolismo , Via de Sinalização Hippo , Vibrio parahaemolyticus/fisiologia , Vibrioses/veterinária , Imunidade Inata/genética
6.
Fish Shellfish Immunol ; 141: 109078, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37716494

RESUMO

Heat shock proteins play an important role in host defense, and modulate immune responses against pathogen infection. In this study, a novel HSC70 from the mud crab (designated as SpHSC70) was cloned and characterized. The full length of SpHSC70 contained a 58 bp 5'untranslated region (UTR), an open reading frame (ORF) of 2,046 bp and a 3'UTR of 341 bp. The SpHSC70 protein included the conserved DnaK motif. The mRNA of SpHSC70 was highly expressed in the hemocytes, heart and hepatopancreas, and lowly expressed in the intestine. The subcellular localization results indicated that SpHSC70 was localized in both the cytoplasm and the nucleus. Moreover, SpHSC70 was significantly responsive to bacterial challenge. RNA interference experiment was designed to investigate the roles of SpHSC70 in response to bacterial challenge. V. parahaemolyticus infection induced the expression levels of SpPO, SpHSP70, SpSOD and SpCAT. Knocking down SpHSC70 in vivo can decrease the expression of these genes after V. parahaemolyticus infection. These results suggested that SpHSC70 could play a vital role in defense against V. parahaemolyticus infection via activating the immune response and antioxidant defense signaling pathways in the mud crab.


Assuntos
Braquiúros , Vibrioses , Vibrio parahaemolyticus , Animais , Vibrio parahaemolyticus/fisiologia , Vibrioses/microbiologia , Interferência de RNA , Bactérias/metabolismo , Proteínas de Artrópodes , Filogenia
7.
Fish Shellfish Immunol ; 135: 108674, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36933585

RESUMO

Cytochrome P450 (CYPs) enzymes are one of the critical detoxification enzymes, playing a key role in antioxidant defense. However, the information of CYPs cDNA sequences and their functions are lacked in crustaceans. In this study, a novel full-length of CYP2 from the mud crab (designated as Sp-CYP2) was cloned and characterized. The coding sequence of Sp-CYP2 was 1479 bp in length and encoded a protein containing 492 amino acids. The amino acid sequence of Sp-CYP2 comprised a conserved heme binding site and chemical substrate binding site. Quantitative real-time PCR analysis revealed that Sp-CYP2 was ubiquitously expressed in various tissues, and it was highest in the heart followed by the hepatopancreas. Subcellular localization showed that Sp-CYP2 was prominently located in the cytoplasm and nucleus. The expression of Sp-CYP2 was induced by Vibrio parahaemolyticus infection and ammonia exposure. During ammonia exposure, ammonia exposure can induce oxidative stress and cause severely tissue damage. Knocking down Sp-CYP2 in vivo can increase malondialdehyde content and the mortality of mud crabs after ammonia exposure. All these results suggested that Sp-CYP2 played a crucial role in the defense against environmental stress and pathogen infection in crustaceans.


Assuntos
Braquiúros , Animais , Antioxidantes , Sequência de Bases , Filogenia , Amônia , Imunidade Inata/genética , Proteínas de Artrópodes
8.
Fish Shellfish Immunol ; 143: 109235, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37989447

RESUMO

Activating transcription factor 6 (ATF6) is critical for regulation of unfolded protein response (UPR), which is involved in the endoplasmic reticulum (ER) proteostasis maintenance and cellular redox regulation. In the present study, a ATF6 gene from the mud crab (designated as Sp-ATF6) has been cloned and identified. The open reading frame of Sp-ATF6 was 1917 bp, encoding a protein of 638 amino acids. The deduced amino acid sequences of Sp-ATF6 contained a typical basic leucine zipper (BZIP domain). Sp-ATF6 was widely expressed in all tested tissues, with the highest expression levels in the hemocytes and the lowest in the muscle. Subcellular localization showed that Sp-ATF6 was expressed in both nucleus and cytoplasm of S2 cells. The expression level of Sp-ATF6 was induced by hydrogen peroxide and V. parahaemolyticus challenge, indicating that the ATF6 pathway was activated in response to ER stress. In order to know more about the regulation mechanism of the Sp-ATF6, RNA interference experiment was investigated. Knocking down Sp-ATF6 in vivo can decrease the expression of antioxidant-related genes (CAT and SOD) and heat shock proteins (HSP90 and HSP70) after V. parahaemolyticus infection. All these results suggested that Sp-ATF6 played a crucial role in the defense against environmental stress and pathogen infection in crustaceans.


Assuntos
Braquiúros , Animais , Braquiúros/microbiologia , Peróxido de Hidrogênio , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Filogenia , Sequência de Aminoácidos , Bactérias/metabolismo , Proteínas de Artrópodes/química , Imunidade Inata/genética
9.
Fish Shellfish Immunol ; 127: 437-445, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35779811

RESUMO

Mud crab reovirus (MCRV) is a serious pathogen that leads to large economic losses in the mud crab farming. However, the molecular mechanism of the immune response after MCRV infection is unclear. In the present study, physiological, transcriptomic, and metabolomic responses after MCRV infection were investigated. The results showed that MCRV infection could increase lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase activities. MCRV infection decreased antioxidant enzyme activity levels, induced oxidative stress, and caused severe histological damage. Transcriptome analysis identified 416 differentially expressed genes, including 354 up-regulated and 62 down-regulated genes. The detoxification, immune response, and metabolic processes-related genes were found. The results showed that two key pathways including phagocytosis and apoptosis played important roles in response to MCRV infection. The combination of transcriptomic and metabolomic analyses showed that related metabolic pathways, such as glycolysis, citrate cycle, lipid, and amino acid metabolism were also significantly disrupted. Moreover, the biosynthesis of unsaturated fatty acids was activated in response to MCRV infection. This study provided a novel insight into the understanding of cellular mechanisms in crustaceans against viral invasion.


Assuntos
Braquiúros/virologia , Reoviridae/patogenicidade , Aminoácidos/metabolismo , Animais , Apoptose , Aquicultura , Braquiúros/enzimologia , Braquiúros/imunologia , Braquiúros/metabolismo , Ácidos Graxos Insaturados/biossíntese , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos , Estresse Oxidativo , Fagocitose , Reoviridae/fisiologia
10.
Fish Shellfish Immunol ; 130: 472-478, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36162776

RESUMO

Glutaredoxin (Grx) is a class molecule oxidoreductase, which plays a key role in maintaining redox homeostasis and regulating cell survival pathways. However, the expression pattern and function of Grx remain unknown in the mud crab (Scylla paramamosain). In the present study, a novel full-length of Grx 5 from the mud crab (designated as Sp-Grx 5) was cloned and characterized. The open reading frame of Sp-Grx 5 was 441 bp, which encoded a putative protein of 146 amino acids. The amino acid sequence of Sp-Grx 5 contained a typical C-G-F-S redox active motif and several GSH binding sites. Sp-Grx 5 widely existed in all tested tissues with a high-level expression in hepatopancreas. Subcellular localization showed that Sp-Grx 5 was located in the cytoplasm and nucleus. The expression of Sp-Grx 5 was significantly up-regulated after Vibrio parahaemolyticus infection and cadmium exposure, suggesting that Sp-Grx 5 was involved in innate immunity and detoxification. Furthermore, overexpression of Sp-Grx 5 could improve cells viability after H2O2 exposure. All these results indicated that Sp-Grx 5 played important roles in the redox homeostasis and innate immune response in crustaceans.


Assuntos
Braquiúros , Aminoácidos , Animais , Proteínas de Artrópodes/química , Bactérias/metabolismo , Sequência de Bases , Cádmio/toxicidade , Glutarredoxinas/genética , Peróxido de Hidrogênio , Imunidade Inata/genética , Filogenia
11.
Fish Shellfish Immunol ; 124: 39-46, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35367375

RESUMO

Phosphofructokinase (PFK), the key enzyme of glycolysis, can catalyze the irreversible transphosphorylation of fructose-6-phosphate forming fructose-1, 6-biphosphate. In the present study, a PFK gene from the mud crab Scylla paramamosain, named SpPFK, was cloned and characterized. The full length of SpPFK contained a 5'untranslated region (UTR) of 249 bp, an open reading frame of 2,859 bp, and a 3'UTR of 1,248 bp. The mRNA of SpPFK was highly expressed in the gill, followed by the hemocytes and muscle. The expression of SpPFK was significantly up-regulated after mud crab dicistrovirus-1 (MCDV-1) infection. Knocking down SpPFK in vivo by RNA interference significantly reduced the expression of lactate dehydrogenase after MCDV-1 infection. Furthermore, silencing of SpPFK in vivo increased the survival rate of mud crabs and decreased the MCDV-1 copies in the gill and hepatopancreas after MCDV-1 infection. All these results suggested that SpPFK could play an important role in the process of MCDV-1 proliferation in mud crab.


Assuntos
Braquiúros , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Braquiúros/genética , Braquiúros/metabolismo , Proliferação de Células , Fosfofrutoquinases/genética , Fosfofrutoquinases/metabolismo , Filogenia
12.
Can J Microbiol ; 68(3): 215-226, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34855458

RESUMO

Vibrio harveyi can cause infections and diseases in a variety of marine vertebrates and invertebrates, which are harmful to the aquaculture industry. The LuxS quorum-sensing system regulates the expression of virulence factors in a wide variety of pathogenic bacteria. In this study, an in-frame deletion of the luxS gene was constructed to reveal the role of LuxS in the physiology and virulence of V. harveyi. Statistical analysis showed no significant differences in the growth ability, biofilm formation, antibiotic susceptibility, virulence by intraperitoneal injection, and ability of V. harveyi to colonize the spleen and liver of the pearl gentian grouper between the wild-type (WT) and luxS mutant. However, deletion of luxS decreased the secretion of extracellular protease, while increasing swimming and swarming abilities. Simultaneously, a luxS-deleted mutant showed overproduction of lateral flagella, and an intact luxS complemented this defect. Since motility is flagella dependent, 16 V. harveyi flagella biogenesis related genes were selected for further analysis. Based on quantitative real-time reverse transcription-PCR (qRT-PCR), the expression levels of these genes, including the polar flagella genes flaB, flhA, flhF, flhB, flhF, fliS, and flrA and the lateral flagella genes flgA, flgB, fliE, fliF, lafA, lafK, and motY, were significantly upregulated in the ΔluxS: pMMB207 (ΔluxS+) strain as compared with the V. harveyi 345: pMMB207 (WT+) and C-ΔluxS strains during the early, mid-exponential, and stationary growth phases. Our results indicate that LuxS plays an important role in controlling motility, flagella biogenesis, and extracellular protease secretion in V. harveyi.


Assuntos
Peptídeo Hidrolases , Vibrio , Animais , Proteínas de Bactérias/metabolismo , Liases de Carbono-Enxofre/metabolismo , Regulação Bacteriana da Expressão Gênica , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Vibrio/genética
13.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36233199

RESUMO

In the Hippo pathway, activation of Hippo and Warts (Wts) kinases results in the phosphorylation of Yorkie (Yki), to prevent its nuclear translocation. Shrimp aquaculture is threatened by Vibrio genus bacteria. In this study, we examine the role of the Hippo pathway in immune defense against Vibrio parahaemolyticus in Pacific white shrimp Penaeus vannamei. We show that V. parahaemolyticus infection promotes the expression of Yki and facilitates the dephosphorylation and nuclear translocation of Yki, indicating the inhibition of Hippo signaling upon bacterial infection. There is a complex regulatory relationship between the Hippo pathway components Hippo, Wts, and Yki and the immune-related transcription factors Dorsal, Relish, and STAT. Silencing of Hippo and Wts weakened hemocyte phagocytosis, while the silencing of Yki enhanced it, suggesting a positive regulation of shrimp cellular immunity by Hippo signaling activation. In vivo silencing of Hippo and Wts decreased the survival rates of V. parahaemolyticus-infected shrimp and elevated the bacterial content in tissues, while the silencing of Yki showed the opposite results. This suggests that the activation of Hippo signaling and the inhibition of Yki enhance antibacterial immunity in shrimp.


Assuntos
Penaeidae , Vibrioses , Vibrio parahaemolyticus , Animais , Imunidade , Penaeidae/imunologia , Penaeidae/microbiologia , Transdução de Sinais , Fatores de Transcrição/metabolismo , Vibrioses/veterinária
14.
Microb Pathog ; 157: 104965, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34015493

RESUMO

Vibrio harveyi is a Gram-negative bacterium that occurs widely in the ocean and a kind of pathogenic bacteria associated with vibriosis in grouper. We investigated whether the VscCD protein of the type Ⅲ secretion system (T3SS) was important for pathogenicity of V. harveyi. Mutations to the vscC and vscD genes (ΔvscCD) and complementation of the ΔvscCD mutant (C-ΔvscCD) were created. Moreover, the biological characteristics of the wild-type (WT) and mutant strains of V. harveyi 345 were compared. The results showed that deletion of the vscCD genes had no effect on bacterial growth, swimming/swarming ability, secretion of extracellular protease, or biofilm formation. However, as compared with the V. harveyi 345: pMMB207 (WT+) and complementary (C-ΔvscCD) strains, the ΔvscCD: pMMB207 (ΔvscCD+) mutant displayed decreased resistance to acid stress, H2O2, and antibiotics. In addition, infection of the pearl gentian grouper (♀Epinephelus fuscoguttatus × â™‚Epinephelus lanceolatu) showed that as compared with the WT+ and C-ΔvscCD strains, the ΔvscCD+ strain significantly reduced cumulative mortality of the host. The colonization ability of the ΔvscCD+ mutant in the spleen and liver tissues of the pearl gentian grouper was significantly lower than that of the WT+ and C-ΔvscCD strains. In the early stage of infection with the ΔvscCD+ strain, the expression levels of IL-1ß, IL-16, TLR3, TNF-α, MHC-Iα, and CD8α were up-regulated to varying degrees. As compared with the WT+ and C-ΔvscCD strains, luxR expression was significantly up-regulated in the ΔvscCD+ strain, while the expression of vcrH and vp1668 was significantly down-regulated. As an important component of the T3SS, VscCD seemed to play a significant role in the pathogenesis of V. harveyi.


Assuntos
Doenças dos Peixes , Vibrioses , Vibrio , Animais , Peróxido de Hidrogênio , Sistemas de Secreção Tipo III/genética , Vibrio/genética , Vibrioses/veterinária
15.
Fish Shellfish Immunol ; 114: 82-89, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33878427

RESUMO

Oxidative stress is considered as the toxicity mechanism of environmental stressors on aquatic organisms. This study aims to explore the effects of oxidative stress on physiological responses, DNA damage and transcriptional profiles of the mud crabs Scylla paramamosain. In the present study, mud crabs were injected with 0.1% and 1% hydrogen peroxide (H2O2) for 72 h. The results showed that superoxide dismutase and catalase activities significantly decreased after H2O2 injection. Malondialdehyde content, H2O2 content, aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase activity significantly increased after H2O2 injection. Moreover, DNA damage occurred after H2O2 injection. Transcriptome analysis showed that 531 and 372 differentially expressed genes (DEGs) were identified after 0.1% and 1% H2O2 injection, respectively. These DEGs were mainly involved in the oxidative stress response and immune functions. All these results indicated that oxidative stress could impair both antioxidant defense systems and immune systems. Transcriptome analysis provided valuable information on gene functions associated with the response to oxidative stress in the mud crab.


Assuntos
Braquiúros , Dano ao DNA/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Transcriptoma
16.
Fish Shellfish Immunol ; 118: 213-218, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34517139

RESUMO

Apoptosis plays essential roles in the immune defense mechanism against pathogen infection. Caspase 3 is a family of cysteine proteases involved in apoptosis and the immune response. In this study, the full-length of mud crab (Scylla paramamosain) caspase 3 (designated as Sp-caspase 3) was cloned and characterized. The open reading frame of Sp-caspase 3 was comprised a 1035 bp, which encoded a putative protein of 344 amino acids. Sp-caspase 3 was ubiquitously expressed in various tissues with a high-level expression in hemocytes. Cellular localization analysis revealed that Sp-caspase 3 was located in the cytoplasm and nucleus. Over-expression of Sp-caspase 3 could induce cell apoptosis. In addition, V. Parahaemolyticus infection induced the relative expression of caspase-3 mRNA and increased caspase-3 activity. Knocking down Sp-caspase 3 in vivo significantly reduced cell apoptosis and increased mortality of mud crab after V. parahaemolyticus infection. These results indicated that Sp-caspase 3 played important roles in the immune response and apoptosis against bacterial infection.


Assuntos
Braquiúros , Caspase 3 , Vibrioses , Vibrio parahaemolyticus , Animais , Proteínas de Artrópodes/metabolismo , Braquiúros/enzimologia , Braquiúros/imunologia , Braquiúros/microbiologia , Caspase 3/metabolismo , Filogenia , Vibrioses/imunologia , Vibrioses/veterinária , Vibrio parahaemolyticus/imunologia
17.
Fish Shellfish Immunol ; 106: 197-204, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32777460

RESUMO

Mud crab (Scylla paramamosain) is an important economic species in China. Vibrio parahaemolyticus infection have caused a great economic loss in mud crab farming. The mechanism involved in the immune responses of mud crab to V. parahaemolyticus is unclear. In this study, the physiological and immune response to V. parahaemolyticus infection were investigated in S. paramamosain. The results showed that V. parahaemolyticus infection decreased total hemocyte counts, led to cytological damage, and caused high mortality. Transcriptome analysis showed that 1327 differentially expressed genes (DEGs), including 809 up-regulated and 518 down-regulated ones, were obtained after V. parahaemolyticus challenge. These DEGs were mainly involved in the immune response and infectious disease. Additionally, transcriptome analysis revealed that Toll, immune deficiency (IMD), and prophenoloxidase signalling pathways played essential roles in antibacterial immunity against V. parahaemolyticus infection in mud crab.


Assuntos
Proteínas de Artrópodes/imunologia , Braquiúros/imunologia , Imunidade Inata , Transcriptoma/imunologia , Vibrio parahaemolyticus/fisiologia , Animais , Braquiúros/microbiologia , Perfilação da Expressão Gênica
18.
Virus Genes ; 56(6): 749-755, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33033883

RESUMO

Infectious spleen and kidney necrosis virus (ISKNV), causing serious infectious diseases to marine and freshwater fishes, is the type species of the genus Megalocytivirus, family Iridoviridae. In this study, the transcriptional programs of ISKNV in vitro (MFF-1 cells) and in vivo (spleens from mandarin fish) were investigated using real-time PCR. Transcription of all the putative open reading frames (ORFs) of ISKNV was verified. The temporal expression patterns of ISKNV ORFs in vitro and in vivo, including peak expression times (PETs) and relative maximal expression levels, were determined and compared. The K-means clustering with Spearman rank correlation was generated in heat maps constructed based on ISKNV ORF expression profiles in vivo and in vitro. The current study may provide a global picture of ISKNV infection at the transcription level and help better understand the molecular pathogenic mechanism of megalocytiviruses.


Assuntos
Infecções por Vírus de DNA/virologia , Doenças dos Peixes/virologia , Peixes/virologia , Iridoviridae/genética , Animais , Linhagem Celular , Fases de Leitura Aberta , Transcriptoma , Proteínas Virais/genética
19.
Appl Microbiol Biotechnol ; 104(5): 2229-2241, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31915903

RESUMO

The aquatic microbial community is sensitive to environmental change; however, the impacts of those changes combined with disease outbreaks affecting S. paramamosain are unknown. Thus, from March to October, we explored the interaction between aquacultural environmental conditions and microbial composition and function in open-air aquaculture ponds containing S. paramamosain in Southern China. The microbial community structure was significantly positively correlated with microbial community function. The environment variables such as temperature and salinity during May and June changed more quickly compared with other periods, resulting changes in the structure and function of the microbial community affected S. paramamosain survivability, with higher crab mortality observed from May to June compared with other periods. These included changes in the relative abundance of Microtrichales, Synechococcales, Rhodobacterales, Chitinophagales, and SAR11_clade, and corresponding functions associated with glycolysis and/or gluconeogenesis, porphyrin and chlorophyll metabolism, photosynthetic proteins, and transcription factors. These changes could impact S. paramamosain mortality and be used to evaluate the health status of the ponds. Though the environment variables during July~October changed slowly comparing to May and June, the ponds microflora changed which benefit S. paramamosain survivability with correspondingly low S. paramamosain mortality. Therefore, rapid environmental change alters the structure and function of the aquatic microflora, increasing S. paramamosain mortality.


Assuntos
Braquiúros/fisiologia , Microbiota , Lagoas/microbiologia , Microbiologia da Água , Animais , Aquicultura , China , Monitoramento Ambiental , Microbiota/genética , Nutrientes/análise , Lagoas/química , Salinidade , Estações do Ano , Temperatura
20.
J Fish Dis ; 43(8): 853-862, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32557678

RESUMO

To understand the driving environmental factors in changes of bacterial virulence and antibiotic resistance, we determined the prevalence, antibiotic resistance and antibiotic resistance and virulence genes of Vibrio harveyi isolated from diseased marine fish in south coastal China. We isolated 2, 52 and 53 V. harveyi strains from Fujian, Hainan and Guangdong, respectively, and identified them by multilocus sequence analysis of 16S rRNA-toxRVh -rctB. Nine typical virulence genes were represented at a higher average in Hainan (7.39 ± 0.24) than in Guangdong (6.91 ± 0.28). Five atypical virulence genes were detected in some isolates. In particular, flaC and vvh were detected in more than 60% of isolates. Their average number was significantly higher in Hainan (2.30 ± 0.20) than in Guangdong (1.70 ± 0.10). Multidrug resistance was widespread with an average resistance to 4.57 ± 0.18 of 15 antibiotics. Both the average number of antibiotic resistance and antibiotic resistance genes were higher in Hainan (5.25 ± 0.27 and 1.11 ± 0.15, respectively) than in Guangdong (3.87 ± 0.21 and 0.75 ± 0.10, respectively). This study demonstrated that there were more virulence genes and greater drug resistance in Hainan than in Guangdong, suggesting that warmer temperature and antibiotics pollutants probably enhance antibiotic resistance and bacterial infection.


Assuntos
Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Temperatura Alta , Vibrio/fisiologia , Vibrio/patogenicidade , Virulência/genética , Organismos Aquáticos , China , Oceano Pacífico , Vibrio/genética , Poluentes Químicos da Água/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa