Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Hepatol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960374

RESUMO

BACKGROUND & AIMS: Sodium taurocholate cotransporting polypeptide (NTCP) has been identified as the cellular receptor for hepatitis B virus (HBV). However, hepatocytes expressing NTCP exhibit varying susceptibilities to HBV infection. This study aimed to investigate whether other host factors modulate the process of HBV infection. METHODS: Liver biopsy samples obtained from children with hepatitis B were used for single-cell sequencing and susceptibility analysis. Primary human hepatocytes, HepG2-NTCP cells, and human liver chimeric mice were used to analyze the effect of candidate host factors on HBV infection. RESULTS: Single-cell sequencing and susceptibility analysis revealed a positive correlation between neuropilin-1 (NRP1) expression and HBV infection. In the HBV-infected cell model, NRP1 overexpression before HBV inoculation significantly enhanced viral attachment and internalization, and promoted viral infection in the presence of NTCP. Mechanistic studies indicated that NRP1 formed a complex with LHBs and NTCP. The NRP1 b domain mediated its interaction with conserved arginine residues at positions 88 and 92 in the preS1 domain of the HBV envelope protein LHBs. This NRP1-preS1 interaction subsequently promoted the binding of preS1 to NTCP, facilitating viral infection. Moreover, disruption of the NRP1-preS1 interaction by the NRP1 antagonist EG00229 significantly attenuated the binding affinity between NTCP and preS1, thereby inhibiting HBV infection both in vitro and in vivo. CONCLUSIONS: Our findings indicate that NRP1 is a novel host factor for HBV infection, which interacts with preS1 and NTCP to modulate HBV entry into hepatocytes. IMPACT AND IMPLICATIONS: HBV infection is a global public health problem, but the understanding of the early infection process of HBV remains limited. Through single-cell sequencing, we identified a novel host factor, NRP1, which modulates HBV entry by interacting with HBV preS1 and NTCP. Moreover, antagonists targeting NRP1 can inhibit HBV infection both in vitro and in vivo. This study could further advance our comprehension of the early infection process of HBV.

2.
J Biol Chem ; 295(1): 111-124, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31748414

RESUMO

Aerobic glycolysis or the Warburg effect (WE) is characterized by increased glucose uptake and incomplete oxidation to lactate. Although the WE is ubiquitous, its biological role remains controversial, and whether glucose metabolism is functionally different during fully oxidative glycolysis or during the WE is unknown. To investigate this question, here we evolved resistance to koningic acid (KA), a natural product that specifically inhibits glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a rate-controlling glycolytic enzyme, during the WE. We found that KA-resistant cells lose the WE but continue to conduct glycolysis and surprisingly remain dependent on glucose as a carbon source and also on central carbon metabolism. Consequently, this altered state of glycolysis led to differential metabolic activity and requirements, including emergent activities in and dependences on fatty acid metabolism. These findings reveal that aerobic glycolysis is a process functionally distinct from conventional glucose metabolism and leads to distinct metabolic requirements and biological functions.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Glicólise , Oxigênio/metabolismo , Inibidores Enzimáticos/farmacologia , Ácidos Graxos/metabolismo , Glucose/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/antagonistas & inibidores , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Humanos , Células MCF-7 , Sesquiterpenos/farmacologia
3.
Angew Chem Int Ed Engl ; 58(48): 17158-17162, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31591797

RESUMO

Glucose transporters play an essential role in cancer cell proliferation and survival and have been pursued as promising cancer drug targets. Using microarrays of a library of new macrocycles known as rapafucins, which were inspired by the natural product rapamycin, we screened for new inhibitors of GLUT1. We identified multiple hits from the rapafucin 3D microarray and confirmed one hit as a bona fide GLUT1 ligand, which we named rapaglutin A (RgA). We demonstrate that RgA is a potent inhibitor of GLUT1 as well as GLUT3 and GLUT4, with an IC50 value of low nanomolar for GLUT1. RgA was found to inhibit glucose uptake, leading to a decrease in cellular ATP synthesis, activation of AMP-dependent kinase, inhibition of mTOR signaling, and induction of cell-cycle arrest and apoptosis in cancer cells. Moreover, RgA was capable of inhibiting tumor xenografts in vivo without obvious side effects. RgA could thus be a new chemical tool to study GLUT function and a promising lead for developing anticancer drugs.


Assuntos
Antineoplásicos/química , Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Macrolídeos/farmacologia , Bibliotecas de Moléculas Pequenas/química , Células A549 , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Macrolídeos/química , Estrutura Molecular , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Análise Serial de Proteínas , Transdução de Sinais , Sirolimo/química , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/metabolismo , Tacrolimo/química , Proteínas de Ligação a Tacrolimo
4.
J Virol ; 91(16)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28566383

RESUMO

Epstein-Barr virus (EBV) is a ubiquitous human gammaherpesvirus that establishes a latency reservoir in B cells. In this work, we show that ibrutinib, idelalisib, and dasatinib, drugs that block B cell receptor (BCR) signaling and are used in the treatment of hematologic malignancies, block BCR-mediated lytic induction at clinically relevant doses. We confirm that the immunosuppressive drugs cyclosporine and tacrolimus also inhibit BCR-mediated lytic induction but find that rapamycin does not inhibit BCR-mediated lytic induction. Further investigation shows that mammalian target of rapamycin complex 2 (mTORC2) contributes to BCR-mediated lytic induction and that FK506-binding protein 12 (FKBP12) binding alone is not adequate to block activation. Finally, we show that BCR signaling can activate EBV lytic induction in freshly isolated B cells from peripheral blood mononuclear cells (PBMCs) and that activation can be inhibited by ibrutinib or idelalisib.IMPORTANCE EBV establishes viral latency in B cells. Activation of the B cell receptor pathway activates lytic viral expression in cell lines. Here we show that drugs that inhibit important kinases in the BCR signaling pathway inhibit activation of lytic viral expression but do not inhibit several other lytic activation pathways. Immunosuppressant drugs such as cyclosporine and tacrolimus but not rapamycin also inhibit BCR-mediated EBV activation. Finally, we show that BCR activation of lytic infection occurs not only in tumor cell lines but also in freshly isolated B cells from patients and that this activation can be blocked by BCR inhibitors.


Assuntos
Linfócitos B/efeitos dos fármacos , Linfócitos B/virologia , Herpesvirus Humano 4/efeitos dos fármacos , Herpesvirus Humano 4/fisiologia , Fatores Imunológicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ativação Viral/efeitos dos fármacos , Humanos , Receptores de Antígenos de Linfócitos B/metabolismo
5.
Front Pharmacol ; 15: 1355507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720778

RESUMO

Introduction: Solute carrier (SLC) transport proteins play a crucial role in maintaining cellular nutrient and metabolite homeostasis and are implicated in various human diseases, making them potential targets for therapeutic interventions. However, the study of SLCs has been limited due to the lack of suitable tools, particularly cell-based substrate uptake assays, necessary for understanding their biological functions and for drug discovery purposes. Methods: In this study, a cell-based uptake assay was developed using a stable isotope-labeled compound as the substrate for SLCs, with detection facilitated by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This assay aimed to address the limitations of existing assays, such as reliance on hazardous radiolabeled substrates and limited availability of fluorescent biosensors. Results: The developed assay was successfully applied to detect substrate uptakes by two specific SLCs: L-type amino acid transporter 1 (LAT1) and sodium taurocholate co-transporting polypeptide (NTCP). Importantly, the assay demonstrated comparable results to the radioactive method, indicating its reliability and accuracy. Furthermore, the assay was utilized to screen for novel inhibitors of NTCP, leading to the identification of a potential NTCP inhibitor compound. Discussion: The findings highlight the utility of the developed cell-based uptake assay as a rapid, simple, and environmentally friendly tool for investigating SLCs' biological roles and for drug discovery purposes. This assay offers a safer alternative to traditional methods and has the potential to contribute significantly to advancing our understanding of SLC function and identifying therapeutic agents targeting SLC-mediated pathways.

6.
Front Pharmacol ; 14: 1220144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305537

RESUMO

[This corrects the article DOI: 10.3389/fphar.2021.717730.].

7.
Chem Commun (Camb) ; 59(21): 3099-3102, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36804590

RESUMO

Highly efficient synthesis of diverse 2,2-disubstituted 3-methyleneindoline derivatives through a one-pot base-promoted post-Ugi 5-exo-dig "Conia-ene"-type cyclization has been disclosed. The mechanism study indicates that an intramolecular hydrogen bond may play a vital role in this process. The antiproliferative evaluation of cancer cell lines reveals that this protocol provides practical use in the green synthesis of bioactive compound libraries.

8.
Front Chem ; 10: 860985, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494629

RESUMO

Targeted therapy is a groundbreaking innovation for cancer treatment. Among the receptor tyrosine kinases, the fibroblast growth factor receptors (FGFRs) garnered substantial attention as promising therapeutic targets due to their fundamental biological functions and frequently observed abnormality in tumors. In the past 2 decades, several generations of FGFR kinase inhibitors have been developed. This review starts by introducing the biological basis of FGF/FGFR signaling. It then gives a detailed description of different types of small-molecule FGFR inhibitors according to modes of action, followed by a systematic overview of small-molecule-based therapies of different modalities. It ends with our perspectives for the development of novel FGFR inhibitors.

9.
Biochemistry ; 50(26): 5893-904, 2011 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-21627110

RESUMO

1,4-Dihydroxy-2-naphthoyl-coenzyme A (DHNA-CoA) synthase, or MenB, catalyzes an intramolecular Claisen condensation involving two oxyanion intermediates in the biosynthetic pathway of menaquinone, an essential respiration electron transporter in many microorganisms. Here we report the finding that the DHNA-CoA product and its analogues bind and inhibit the synthase from Escherichia coli with significant ultraviolet--visible spectral changes, which are similar to the changes induced by deprotonation of the free inhibitors in a basic solution. Dissection of the structure--affinity relationships of the inhibitors identifies the hydroxyl groups at positions 1 (C1-OH) and 4 (C4-OH) of DHNA-CoA or their equivalents as the dominant and minor sites, respectively, for the enzyme--ligand interaction that polarizes or deprotonates the bound ligands to cause the observed spectral changes. In the meantime, spectroscopic studies with active site mutants indicate that C4-OH of the enzyme-bound DHNA-CoA interacts with conserved polar residues Arg-91, Tyr-97, and Tyr-258 likely through a hydrogen bonding network that also includes Ser-161. In addition, site-directed mutation of the conserved Asp-163 to alanine causes a complete loss of the ligand binding ability of the protein, suggesting that the Asp-163 side chain is most likely hydrogen-bonded to C1-OH of DHNA-CoA to provide the dominant polarizing effect. Moreover, this mutation also completely eliminates the enzyme activity, strongly supporting the possibility that the Asp-163 side chain provides a strong stabilizing hydrogen bond to the tetrahedral oxyanion, which takes a position similar to that of C1-OH of the enzyme-bound DHNA-CoA and is the second high-energy intermediate in the intracellular Claisen condensation reaction. Interestingly, both Arg-91 and Tyr-97 are located in a disordered loop forming part of the active site of all available DHNA-CoA synthase structures. Their involvement in the interaction with the small molecule ligands suggests that the disordered loop is folded in interaction with the substrates or reaction intermediates, supporting an induced-fit catalytic mechanism for the enzyme.


Assuntos
Ácido Aspártico , Sequência Conservada , Oxo-Ácido-Liases/química , Oxo-Ácido-Liases/metabolismo , Oxigênio/metabolismo , Análise Espectral , Vitamina K 2/metabolismo , Absorção , Bactérias/enzimologia , Domínio Catalítico , Coenzima A/química , Coenzima A/metabolismo , Coenzima A/farmacologia , Estabilidade Enzimática , Ligação de Hidrogênio , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxo-Ácido-Liases/antagonistas & inibidores , Oxo-Ácido-Liases/genética , Oxigênio/química , Fenóis/química , Fenóis/metabolismo , Prótons
10.
J Biol Chem ; 285(39): 30159-69, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20643650

RESUMO

1,4-Dihydroxy-2-naphthoyl coenzyme A (DHNA-CoA) synthase is a typical crotonase-fold protein catalyzing an intramolecular Claisen condensation in the menaquinone biosynthetic pathway. We have characterized this enzyme from Escherichia coli and found that it is activated by bicarbonate in a concentration-dependent manner. The bicarbonate binding site has been identified in the crystal structure of a virtually identical ortholog (96.8% sequence identity) from Salmonella typhimurium through comparison with a bicarbonate-insensitive orthologue. Kinetic properties of the enzyme and its site-directed mutants of the bicarbonate binding site indicate that the exogenous bicarbonate anion is essential to the enzyme activity. With this essential catalytic role, the simple bicarbonate anion is an enzyme cofactor, which is usually a small organic molecule derived from vitamins, a metal ion, or a metal-containing polyatomic anionic complex. This finding leads to classification of the DHNA-CoA synthases into two evolutionarily conserved subfamilies: type I enzymes that are bicarbonate-dependent and contain a conserved glycine at the bicarbonate binding site; and type II enzymes that are bicarbonate-independent and contain a conserved aspartate at the position similar to the enzyme-bound bicarbonate. In addition, the unique location of the enzyme-bound bicarbonate allows it to be proposed as a catalytic base responsible for abstraction of the α-proton of the thioester substrate in the enzymatic reaction, suggesting a unified catalytic mechanism for all DHNA-CoA synthases.


Assuntos
Bicarbonatos/química , Coenzimas/química , Escherichia coli/enzimologia , Oxo-Ácido-Liases/química , Vitamina K 2/química , Bicarbonatos/metabolismo , Sítios de Ligação , Catálise , Coenzimas/metabolismo , Escherichia coli/genética , Evolução Molecular , Cinética , Mutagênese Sítio-Dirigida , Oxo-Ácido-Liases/classificação , Oxo-Ácido-Liases/genética , Oxo-Ácido-Liases/metabolismo , Salmonella typhimurium/enzimologia , Salmonella typhimurium/genética , Homologia Estrutural de Proteína , Vitamina K 2/metabolismo
11.
Front Pharmacol ; 12: 717730, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421612

RESUMO

Altered tumor metabolism is a hallmark of cancer and targeting tumor metabolism has been considered as an attractive strategy for cancer therapy. Prostaglandin Reductase 1 (PTGR1) is a rate-limiting enzyme involved in the arachidonic acid metabolism pathway and mainly responsible for the deactivation of some eicosanoids, including prostaglandins and leukotriene B4. A growing evidence suggested that PTGR1 plays a significant role in cancer and has emerged as a novel target for cancer therapeutics. In this review, we summarize the progress made in recent years toward the understanding of PTGR1 function and structure, highlight the roles of PTGR1 in cancer, and describe potential inhibitors of PTGR1. Finally, we provide some thoughts on future directions that might facilitate the PTGR1 research and therapeutics development.

12.
Chem Sci ; 12(34): 11484-11489, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34667552

RESUMO

Rapadocin is a novel rapamycin-inspired polyketide-tetrapeptide hybrid macrocycle that possesses highly potent and isoform-specific inhibitory activity against the human equilibrative nucleoside transporter 1 (hENT1). Rapadocin contains an epimerizable chiral center in phenylglycine and an olefin group, and can thus exist as a mixture of four stereoisomers. Herein, we report the first total synthesis of the four stereoisomers of rapadocin using two different synthetic strategies and the assignment of their structures. The inhibitory activity of each of the four synthetic isomers on both hENT1 and hENT2 was determined. It was found that the stereochemistry of phenylglycine played a more dominant role than the configuration of the olefin in the activity of rapadocin. These findings will guide the future design and development of rapadocin analogs as new modulators of adenosine signaling.

13.
Bioorg Med Chem Lett ; 20(13): 3855-8, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20627563

RESUMO

Significant conformational change is detected by circular dichroism and fluorimetry for the major component of the enterobactin synthetase in crowded solutions mimicking the intracellular environment. The structural change correlates well with the extent of the crowding-induced side product suppression in nonribosomal enterobactin synthesis. In contrast, protein-stabilizing solvophobic agents such as glycerol have no effect on the formation of side products, excluding crowding-induced protein stability as a cause for the observed enhancement of the product specificity of the synthetase. These results strongly support that macromolecular crowding is an indispensable physiological factor for normal functioning of the nonribosomal enterobactin synthetase by altering the active sites to increase its product specificity.


Assuntos
Enterobactina/biossíntese , Ligases/química , Ligases/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Dicroísmo Circular , Escherichia coli/enzimologia , Fluorometria , Conformação Molecular , Soluções
14.
Biochemistry ; 48(8): 1712-22, 2009 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-19193103

RESUMO

The type II thioesterase EntH is a hotdog fold protein required for optimal nonribosomal biosynthesis of enterobactin in Escherichia coli. Its proposed proofreading activity in the biosynthesis is confirmed by its efficient restoration of enterobactin synthesis blocked in vitro by analogs of the cognate precursor 2,3-dihydroxybenzoate. Steady-state kinetic studies show that EntH recognizes the phosphopantetheine group and the pattern of hydroxylation in the aryl moiety of its thioester substrates. Remarkably, it is able to distinguish aberrant intermediates from the normal one in the enterobactin assembly line by demonstrating at least 10-fold higher catalytic efficiency toward thioesters derived from aberrant aryl precursors without a para-hydroxyl group, such as salicylate. By structural comparison and site-directed mutagenesis, the thioesterase is found to possess an active site closely resembling that of the 4-hydroxybenzoyl-CoA thioesterase from Arthrobacter sp. strain SU and to involve an acidic residue (glutamate-63) as the catalytic base or nucleophile like all other hotdog thioesterases. In addition, the EntH specificities toward the substrate hydroxylation pattern are found to depend on the active-site histidine-54, threonine-64, serine-67, and methionine-68 with the selectivity significantly reduced or even reversed when they are individually replaced by alanine. These residues are likely responsible for differential interaction of the enzyme with the substrates which leads to distinction between the normal and aberrant precursors in the enterobactin assembly line. These results show that the type II thioesterase evolves its distinctive ability to recognize the aberrant intermediates from the versatile catalytic platform of hotdog proteins and suggests an active search mechanism for type II thioesterases in nonribosomal peptide synthesis.


Assuntos
Aminoácidos/metabolismo , Domínio Catalítico , Enterobactina/biossíntese , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Ácido Graxo Sintases/metabolismo , Mutagênese Sítio-Dirigida , Tioléster Hidrolases/metabolismo , Cristalografia por Raios X , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/química , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Hidrólise/efeitos dos fármacos , Hidroxibenzoatos/farmacologia , Cinética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Especificidade por Substrato/efeitos dos fármacos , Temperatura , Tioléster Hidrolases/química
15.
J Am Chem Soc ; 131(38): 13576-7, 2009 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-19731909

RESUMO

By covalently connecting taxol with a motif that is prone to self-assemble, we successfully generate the precursor (5a), the hydrogelator (5b), and hydrogel of a taxol derivative without compromising the cytotoxic activity of the taxol. This approach promises a general method to create nanofibers of therapeutic molecules that have a dual role, as both the delivery vehicle and the drug itself.


Assuntos
Fosfatase Alcalina/química , Antineoplásicos Fitogênicos/química , Hidrogel de Polietilenoglicol-Dimetacrilato/síntese química , Nanoestruturas/química , Paclitaxel/química , Moduladores de Tubulina/química , Células HeLa , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química
16.
Cell Chem Biol ; 26(5): 652-661.e4, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30827938

RESUMO

The combination of AMD3100 and low-dose FK506 has been shown to accelerate wound healing in vivo. Although AMD3100 is known to work by releasing hematopoietic stem cells into circulation, the mechanism of FK506 in this setting has remained unknown. In this study, we investigated the activities of FK506 in human cells and a diabetic-rat wound model using a non-immunosuppressive FK506 analog named FKVP. While FKVP was incapable of inhibiting calcineurin, wound-healing enhancement with AMD3100 was unaffected. Further study showed that both FK506 and FKVP activate BMP signaling in multiple cell types through FKBP12 antagonism. Furthermore, selective inhibition of BMP signaling abolished stem cell recruitment and wound-healing enhancement by combination treatment. These results shed new light on the mechanism of action of FK506 in acceleration of wound healing, and raise the possibility that less toxic FKBP ligands such as FKVP can replace FK506 for the treatment of chronic wounds.


Assuntos
Ligantes , Peptídeos Cíclicos/farmacologia , Receptores CXCR4/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína 1A de Ligação a Tacrolimo/química , Cicatrização/efeitos dos fármacos , Animais , Benzilaminas , Proteínas Morfogenéticas Ósseas/metabolismo , Ciclamos , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Técnicas de Inativação de Genes , Compostos Heterocíclicos/farmacologia , Humanos , Células Jurkat , Peptídeos Cíclicos/química , Fosforilação/efeitos dos fármacos , Ratos , Receptores CXCR4/antagonistas & inibidores , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Tacrolimo/química , Tacrolimo/farmacologia , Proteína 1A de Ligação a Tacrolimo/deficiência , Proteína 1A de Ligação a Tacrolimo/genética , Proteína 1A de Ligação a Tacrolimo/metabolismo
17.
Nat Chem ; 11(3): 254-263, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30532015

RESUMO

Rapamycin and FK506 are macrocyclic natural products with an extraordinary mode of action, in which they form binary complexes with FK506-binding protein (FKBP) through a shared FKBP-binding domain before forming ternary complexes with their respective targets, mechanistic target of rapamycin (mTOR) and calcineurin, respectively. Inspired by this, we sought to build a rapamycin-like macromolecule library to target new cellular proteins by replacing the effector domain of rapamycin with a combinatorial library of oligopeptides. We developed a robust macrocyclization method using ring-closing metathesis and synthesized a 45,000-compound library of hybrid macrocycles (named rapafucins) using optimized FKBP-binding domains. Screening of the rapafucin library in human cells led to the discovery of rapadocin, an inhibitor of nucleoside uptake. Rapadocin is a potent, isoform-specific and FKBP-dependent inhibitor of the equilibrative nucleoside transporter 1 and is efficacious in an animal model of kidney ischaemia reperfusion injury. Together, these results demonstrate that rapafucins are a new class of chemical probes and drug leads that can expand the repertoire of protein targets well beyond mTOR and calcineurin.


Assuntos
Descoberta de Drogas/métodos , Macrolídeos/química , Macrolídeos/metabolismo , Substâncias Protetoras/química , Substâncias Protetoras/metabolismo , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/prevenção & controle , Animais , Linhagem Celular , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Proteoma/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Sirolimo/química , Sirolimo/metabolismo , Suínos , Serina-Treonina Quinases TOR/química , Serina-Treonina Quinases TOR/metabolismo , Tacrolimo/química , Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/metabolismo
18.
Org Lett ; 10(4): 649-52, 2008 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-18211078

RESUMO

Nonribosomal enterobactin synthetase of Escherichia coli was found to prematurely release a large amount of linear precursors in an in vitro reconstitution. However, these side products are suppressed to negligible levels by polymeric cosolvents that create macromolecular crowding, a prominent feature of the intracellular environment. These findings show that macromolecular crowding is essential to normal functioning of the nonribosomal peptide synthetase and suggest that it may be crucial to biotechnological utilization of similar enzyme systems.


Assuntos
Enterobactina/biossíntese , Escherichia coli/metabolismo , Ligases/metabolismo , Complexos Multienzimáticos/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Biológicos , Estrutura Molecular
19.
Cell Chem Biol ; 24(5): 605-613.e5, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28457705

RESUMO

Protein synthesis plays an essential role in cell proliferation, differentiation, and survival. Inhibitors of eukaryotic translation have entered the clinic, establishing the translation machinery as a promising target for chemotherapy. A recently discovered, structurally unique marine sponge-derived brominated alkaloid, (-)-agelastatin A (AglA), possesses potent antitumor activity. Its underlying mechanism of action, however, has remained unknown. Using a systematic top-down approach, we show that AglA selectively inhibits protein synthesis. Using a high-throughput chemical footprinting method, we mapped the AglA-binding site to the ribosomal A site. A 3.5 Å crystal structure of the 80S eukaryotic ribosome from S. cerevisiae in complex with AglA was obtained, revealing multiple conformational changes of the nucleotide bases in the ribosome accompanying the binding of AglA. Together, these results have unraveled the mechanism of inhibition of eukaryotic translation by AglA at atomic level, paving the way for future structural modifications to develop AglA analogs into novel anticancer agents.


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Oxazolidinonas/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Alcaloides/metabolismo , Antineoplásicos/metabolismo , Produtos Biológicos/metabolismo , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Oxazolidinonas/metabolismo , Conformação Proteica , Ribossomos/efeitos dos fármacos , Ribossomos/genética
20.
Chem Commun (Camb) ; (35): 3705-7, 2006 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17047818

RESUMO

Aggregation in poor solvents and complexation with calf thymus DNA and bovine serum albumin turn "on" the fluorescence of tetraphenylethylene derivatives, due to the restriction of intra-molecular rotations of the dyes in the aggregates and complexes.


Assuntos
Técnicas Biossensoriais/métodos , Corantes/química , Etilenos/química , DNA/química , Fluorescência , Estrutura Molecular , Sensibilidade e Especificidade , Soroalbumina Bovina/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa