Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Anal Chem ; 96(31): 12892-12900, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-39051631

RESUMO

Drug enantiomers can possess vastly different pharmacological properties, yet they are identical in their chemical composition and structural connectivity. Thus, resolving enantiomers poses a great challenge in the field of separation science. Enantiomer separations necessitate interaction of the analyte with a chiral environment─in mass spectrometry-based analysis, a common approach is through a three-point interaction with a chiral selector commonly introduced during sample preparation. In select cases, the structural difference imparted through noncovalent complexation results in enantiomer-specific structural differences, facilitating measurement using a structurally selective analytical technique such as ion mobility-mass spectrometry (IM-MS). In this work, we investigate the direct IM-MS differentiation of chiral drug compounds using mononuclear copper complexes incorporating an amino acid chiral selector. A panel of 20 chiral drugs and drug-like compounds were investigated for separation, and four l-amino acids (l-histidine, l-tryptophan, l-proline, and l-tyrosine) were evaluated as chiral selectors (CS) to provide the chiral environment necessary for differentiation. Enantiomer differentiation was achieved for four chiral molecule pairs (R/S-thalidomide, R/S-baclofen, R/S-metoprolol, and d/l-panthenol) with two-peak resolution (Rp-p) values ranging from 0.7 (>10% valley) to 1.5 (baseline separation). Calibration curves relating IM peak areas to enantiomeric concentrations enabled enantiomeric excess quantitation of racemic thalidomide and metoprolol with residuals of 5.7 and 2.5%, respectively. Theoretical models suggest that CuII and l-histidine complexation around the analyte chiral center is important for gas-phase stereoselectivity. This study demonstrates the potential of combining enantioselective noncovalent copper complexation with structurally selective IM-MS for differentiating chiral drugs and drug-like compounds.


Assuntos
Aminoácidos , Cobre , Espectrometria de Mobilidade Iônica , Cobre/química , Estereoisomerismo , Aminoácidos/química , Aminoácidos/análise , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos , Preparações Farmacêuticas/química , Preparações Farmacêuticas/análise , Complexos de Coordenação/química , Estrutura Molecular
2.
Crit Rev Microbiol ; : 1-16, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39161187

RESUMO

In recent times, the nasal region has emerged as a distinctive and dynamic environment where a myriad of microbial communities establish residence from infancy, persisting as both commensal and opportunistic pathogens throughout the lifespan. Understanding the coexistence of microorganisms in respiratory mucosal layers, their potential for infections, and the underlying molecular mechanisms shaping these interactions is crucial for developing efficient diagnostic and therapeutic interventions against respiratory and neurodegenerative diseases. Despite significant strides in understanding the olfactory system's nexus with nasal microbiota, comprehensive correlations with neurological diseases still need to be discovered. The nasal microbiome, a sentinel in immune defense, orchestrates a delicate equilibrium that, when disrupted, can precipitate severe respiratory infections, including Chronic Rhinosinusitis, Chronic obstructive pulmonary disorder (COPD), and Asthma, and instigate a cascade effect on central nervous system diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Multiple sclerosis (MS). This review aims to redress this imbalance by meticulously exploring the anatomical and microbiological nuances of the nasal mucosal surface in health and disease. By delineating the molecular intricacies of these interactions, this review unravels the molecular mechanisms that govern the intricate nexus between nasal microbiota dysbiosis, olfactory dysfunction, and the progression of respiratory and neurological diseases.

3.
Arch Microbiol ; 206(10): 411, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39311963

RESUMO

Antibiotic resistance has emerged as a global threat, rendering the existing conventional treatment strategies ineffective. In view of this, antimicrobial peptides (AMPs) have proven to be potent alternative therapeutic interventions with a wide range of applications in clinical health. AMPs are small peptides produced naturally as a part of the innate immune responses against a broad range of bacterial, fungal and viral pathogens. AMPs present a myriad of advantages over traditional antibiotics, including their ability to target multiple sites, reduced susceptibility to resistance development, and high efficacy at low doses. These peptides have demonstrated notable potential in inhibiting microbes resistant to traditional antibiotics, including the notorious ESKAPE pathogens, recognized as the primary culprits behind nosocomial infections. AMPs, with their multifaceted benefits, emerge as promising candidates in the ongoing efforts to combat the escalating challenges posed by antibiotic resistance. This in-depth review provides a detailed discussion on AMPs, encompassing their classification, mechanism of action, and diverse clinical applications. Focus has been laid on combating newly emerging drug-resistant organisms, emphasizing the significance of AMPs in mitigating this pressing challenge. The review also illuminates potential future strategies that may be implemented to improve AMP efficacy, such as structural modifications and using AMPs in combination with antibiotics and matrix-inhibiting compounds.


Assuntos
Peptídeos Antimicrobianos , Bactérias , Humanos , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Bactérias/efeitos dos fármacos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Fungos/efeitos dos fármacos , Resistência Microbiana a Medicamentos , Farmacorresistência Bacteriana , Peptídeos Catiônicos Antimicrobianos/farmacologia , Animais , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia
4.
Genomics ; 112(3): 2130-2145, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31837401

RESUMO

Powdery mildew (PM) is a serious fungal disease of legumes. To gain novel insights into PM pathogenesis and host resistance/susceptibility, we used dual RNA-Seq to simultaneously capture host and pathogen transcriptomes at 1 d post-inoculation of resistant and susceptible Medicago truncatula genotypes with the PM Erysiphe pisi (Ep). Differential expression analysis indicates that R-gene mediated resistance against Ep involves extensive transcriptional reprogramming. Functional enrichment of differentially expressed host genes and in silico analysis of co-regulated promoters suggests that amplification of PTI, activation of the JA/ET signaling network, and regulation of growth-defense balance correlate with resistance. In contrast, processes that favor biotrophy, including suppression of defense signaling and programmed cell death, and weaker cell wall defenses are important susceptibility factors. Lastly, Ep effector candidates and genes with known/putative virulence functions were identified, representing a valuable resource that can be leveraged to improve our understanding of legume-PM interactions.


Assuntos
Resistência à Doença/genética , Erysiphe/genética , Erysiphe/patogenicidade , Medicago truncatula/genética , Medicago truncatula/microbiologia , Doenças das Plantas/microbiologia , Erysiphe/crescimento & desenvolvimento , Erysiphe/metabolismo , Interações Hospedeiro-Patógeno/genética , Medicago truncatula/metabolismo , Doenças das Plantas/genética , Regiões Promotoras Genéticas , RNA-Seq , Fatores de Transcrição/metabolismo , Fatores de Virulência/genética
5.
Ecotoxicology ; 23(6): 1015-21, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24799184

RESUMO

To compare the target and non-target effects of two chemical-pesticides (chlorpyrifos and endosulfan) with that of a bio-pesticide (azadirachtin), Vigna radiata (mung bean) was grown in a randomized pot experiment with recommended and higher application rates of pesticides. Colony counts enumerating specific microbial populations, viz. fungi, Pseudomonas, nitrogen-fixing bacteria, and phosphate-solubilizing microorganisms, were performed. In addition, several plant growth parameters such as root and shoot lengths were also monitored. It was observed that the pesticides exerted a suppressive effect on different microbial communities under study in the initial 30 days period. The bacterial and fungal populations in chlorpyrifos treated plants increased thereafter. Endosulfan resulted in enhancement of fungi and nitrogen-fixing bacteria, although phosphate-solubilizing microorganisms were suppressed at higher application rates. Azadirachtin, which is gaining popularity owing to its biological origin, did not result in enhancement of any microbial populations; on the other hand, it had a deleterious effect on phosphate-solubilizing bacteria. This study is the first to evaluate the non-target effects of pesticides with a comparison between chemical- and bio-pesticides, and also stresses the importance of critical investigation of bio-pesticides before their wide spread application in agriculture.


Assuntos
Clorpirifos/farmacologia , Endossulfano/farmacologia , Fabaceae/efeitos dos fármacos , Limoninas/farmacologia , Praguicidas/farmacologia , Fabaceae/crescimento & desenvolvimento , Fabaceae/microbiologia , Rizosfera
6.
NPJ Vaccines ; 9(1): 43, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396073

RESUMO

The advent of SARS-CoV-2 variants with defined mutations that augment pathogenicity and/or increase immune evasiveness continues to stimulate global efforts to improve vaccine formulation and efficacy. The extraordinary advantages of lipid nanoparticles (LNPs), including versatile design, scalability, and reproducibility, make them ideal candidates for developing next-generation mRNA vaccines against circulating SARS-CoV-2 variants. Here, we assess the efficacy of LNP-encapsulated mRNA booster vaccines encoding the spike protein of SARS-CoV-2 for variants of concern (Delta, Omicron) and using a predecessor (YN2016C isolated from bats) strain spike protein to elicit durable cross-protective neutralizing antibody responses. The mRNA-LNP vaccines have desirable physicochemical characteristics, such as small size (~78 nm), low polydispersity index (<0.13), and high encapsulation efficiency (>90%). We employ in vivo bioluminescence imaging to illustrate the capacity of our LNPs to induce robust mRNA expression in secondary lymphoid organs. In a BALB/c mouse model, a three-dose subcutaneous immunization of mRNA-LNPs vaccines achieved remarkably high levels of cross-neutralization against the Omicron B1.1.529 and BA.2 variants for extended periods of time (28 weeks) with good safety profiles for all constructs when used in a booster regime, including the YN2016C bat virus sequences. These findings have important implications for the design of mRNA-LNP vaccines that aim to trigger durable cross-protective immunity against the current and newly emerging variants.

7.
Aging Cell ; 23(4): e14099, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38317404

RESUMO

Although the two-dose mRNA vaccination regime provides protection against SARS-CoV-2, older adults have been shown to exhibit poorer vaccination responses. In addition, the role of vaccine-induced T-cell responses is not well characterised. We aim to assess the impact of age on immune responses after two doses of the BNT162b2 mRNA vaccine, focussing on antigen-specific T-cells. A prospective 3-month study was conducted on 15 young (median age 31 years, interquartile range (IQR) 25-35 years) and 14 older adults (median age 72 years, IQR 70-73 years). We assessed functional, neutralising antibody responses against SARS-CoV-2 variants using ACE-2 inhibition assays, and changes in B and T-cell subsets by high-dimensional flow cytometry. Antigen-specific T-cell responses were also quantified by intracellular cytokine staining and flow cytometry. Older adults had attenuated T-helper (Th) response to vaccination, which was associated with weaker antibody responses and decreased SARS-CoV-2 neutralisation. Antigen-specific interferon-γ (IFNγ)-secreting CD4+ T-cells to wild-type and Omicron antigens increased in young adults, which was strongly positively correlated with their neutralising antibody responses. Conversely, this relationship was negative in older adults. Hence, older adults' relative IFNγ-secreting CD4+ T cell deficiency might explain their poorer COVID-19 vaccination responses. Further exploration into the aetiology is needed and would be integral in developing novel vaccination strategies and improving infection outcomes in older adults.


Assuntos
COVID-19 , Interferon gama , Adulto Jovem , Humanos , Idoso , Adulto , Linfócitos T CD4-Positivos , Vacinas contra COVID-19 , Vacina BNT162 , Estudos Prospectivos , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Anticorpos Neutralizantes , Anticorpos Antivirais
8.
J Infect ; 89(4): 106238, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39121971

RESUMO

BACKGROUND: Immunity to SARS-CoV-2 vaccination and infection differs considerably among individuals. We investigate the critical pathways that influence vaccine-induced cross-variant serological immunity among individuals at high-risk of COVID-19 complications. METHODS: Neutralizing antibodies to the wild-type SARS-CoV-2 virus and its variants (Beta, Gamma, Delta and Omicron) were analyzed in patients with autoimmune diseases, chronic comorbidities (multimorbidity), and healthy controls. Antibody levels were assessed at baseline and at different intervals up to 12 months following primary and booster vaccination with either BNT162b2 or mRNA-1273. Immunity induced by vaccination with and without infection (hybrid immunity) was compared with that of unvaccinated individuals with recent SARS-CoV-2 infection. Plasma cytokines were analyzed to investigate variations in antibody production following vaccination. RESULTS: Patients with autoimmune diseases (n = 137) produced lesser antibodies to the wild-type SARS-CoV-2 virus and its variants compared with those in the multimorbidity (n = 153) and healthy groups (n = 229); antibody levels were significantly lower in patients with neuromyelitis optica and those on prednisolone, mycophenolate or rituximab treatment. Multivariate logistic regression analysis identified neuromyelitis optica (odds ratio 8.20, 95% CI 1.68-39.9) and mycophenolate (13.69, 3.78-49.5) as significant predictors of a poorer antibody response to vaccination (i.e, neutralizing antibody <40%). Infected participants exhibited antibody levels that were 28.7% higher (95% CI 24.7-32.7) compared to non-infected participants six months after receiving a booster vaccination. Individuals infected during the Delta outbreak generated cross-protective neutralizing antibodies against the Omicron variant in quantities comparable to those observed after infection with the Omicron variant itself. In contrast, unvaccinated individuals recently infected with the wild-type (n = 2390) consistently displayed lower levels of neutralizing antibodies against both the wild-type virus and other variants. Pathway analyses suggested an inverse relationship between baseline T cell subsets and antibody production following vaccination. CONCLUSION: Hybrid immunity confers a robust protection against COVID-19 among immunocompromised individuals.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Hospedeiro Imunocomprometido , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/prevenção & controle , Masculino , Feminino , SARS-CoV-2/imunologia , Pessoa de Meia-Idade , Anticorpos Antivirais/sangue , Hospedeiro Imunocomprometido/imunologia , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Idoso , Vacina BNT162/imunologia , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Vacinação , Proteção Cruzada/imunologia , Imunização Secundária , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Doenças Autoimunes/imunologia , Citocinas/sangue
9.
Ecotoxicology ; 22(10): 1479-89, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24085606

RESUMO

To study the effects of two chemical pesticides (chlorpyrifos and endosulfan), and a bio-pesticide (azadirachtin) on bacterial diversity in rhizospheric soil, a randomized pot experiment was conducted on mung bean (Vigna radiata) with recommended and higher doses of pesticides. Denaturing gradient gel electrophoresis was used to analyze such effects on both resident and active bacterial communities across two time points. It was observed that higher doses of azadirachtin mimicked the effects of chlorpyrifos on bacterial diversity. Both azadirachtin and chlorpyrifos showed a dose- and time-dependent effect, which was observable only at the RNA level. Endosulfan treatments showed dissimilar profiles compared to control. Most of the bands showed high sequence similarities to known bacterial groups, including many nitrogen-fixing, phosphate-solubilizing, and plant-growth-promoting bacteria. This study indicates that pesticides display non-target effects on active microbial populations that serve important ecosystem functions, thereby emphasizing the need to critically investigate and validate the use of bio-pesticides in agriculture before accepting them as safe alternatives to chemical pesticides.


Assuntos
Bactérias/efeitos dos fármacos , Clorpirifos/toxicidade , Endossulfano/toxicidade , Inseticidas/toxicidade , Limoninas/toxicidade , Microbiologia do Solo , Biota , Eletroforese em Gel de Gradiente Desnaturante , Relação Dose-Resposta a Droga , Fabaceae/crescimento & desenvolvimento , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/análise , Rizosfera , Análise de Sequência de DNA
10.
Environ Sci Pollut Res Int ; 30(10): 24899-24906, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35113375

RESUMO

Microbubbles are small gas-filled bubbles which have wide application in various industries. The stability of microbubble is of primary concern for the application of microbubble. In this research, the stability of microbubble dispersion generated using CTAB surfactant is analyzed by drainage mechanism. The stability of microbubble dispersion is studied on the basis of the half-life of microbubble dispersion. Microbubble dispersion gas fraction and apparent rise velocity of interface of microbubble dispersion are also calculated. The size of microbubble is estimated from the apparent rise velocity of interface of microbubble dispersion. Further, silica nano-particles are added to the surfactants to study their effect on the stability of microbubble dispersion. The observed results clearly indicate that the stability of microbubble dispersion is significantly affected by the surfactant concentration and the weight of silica nano-particle in the liquid. Similar results were observed for the apparent rise velocity of interface and bubble size of dispersion. The present work may be beneficial for the application of microbubble in various chemical and biochemical industries and scientific community.


Assuntos
Microbolhas , Dióxido de Silício , Tensoativos
11.
Indian J Nephrol ; 33(2): 108-113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234434

RESUMO

Background: Atypical hemolytic uremic syndrome (aHUS) is hemolytic uremic syndrome (HUS) without a coexisting disease or specific infection. Eculizumab is the standard of care for children with aHUS. However, since it is not yet available in India, plasma therapy remains the treatment of choice in these patients. We studied the clinical profile of children with aHUS and the determinants associated with low estimated glomerular filtration rate (eGFR) on follow-up. Materials and Methods: A retrospective chart review of children (1-18 years) with aHUS managed at a tertiary care center was done. Demographic details, clinical features, and investigations at presentation and on subsequent visits were noted. Details of treatment and duration of hospital stay were recorded. Results: Of 26 children, boys outnumbered girls (2:1). The mean age at presentation was 80 ± 37.6 months. All children were hypertensive during the early phase of illness. Anti-factor H antibodies were elevated in 84% (22/26). Plasma therapy was initiated for 25 patients, and in 17 children, additionally immunosuppression was given. The median duration to achieve hematological remission was 17 days. As compared to children with normal eGFR, those with CKD stage 2 or more had significant delay in initiation of plasma therapy (4 vs. 14 days) and also took a longer time to achieve hematological remission (15 vs. 28 days). The prevalence of hypertension and proteinuria at the last follow-up was 63% and 27%, respectively. Conclusion: Delayed initiation of plasma therapy and longer time to achieve hematological remission are associated with lower eGFR on follow-up. Long-term monitoring of hypertension and proteinuria is needed in these children.

12.
Pediatr Pulmonol ; 58(10): 2889-2898, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37530492

RESUMO

BACKGROUND: To evaluate the diagnostic accuracy of sonographic assessment of diaphragmatic dimensions and excursions in predicting Continuous Positive Airway Pressure (CPAP) failure in preterm neonates with respiratory distress. METHODS: Prospective cohort study among preterm neonates less than 34 weeks of gestation who were hemodynamically stable and either admitted with respiratory distress or who developed respiratory distress shortly after admission to the NICU and having Silverman-Anderson Score (SAS) ≥ 3/10 were included. We performed sonographic assessment of diaphragmatic dimensions and excursions before and one hour ±30 minutes after application of CPAP. 'CPAP failure' was defined as combined outcome of the need of surfactant and/or upgradation of respiratory support within first 72 hours after a trial of CPAP. Clinical parameters and diaphragmatic measurements were compared between CPAP failure and success groups. RESULTS: Of 62 participants, 20 (32%) failed CPAP. On binomial logistic regression (after adjustment for gestational age and birth weight), initial SAS, higher diaphragmatic excursion (both left and right, before and after CPAP application), lower left hemidiaphragm diaphragmatic thickness fraction (DTF) (before CPAP application) and lower right DTF (after CPAP application) were independent predictors of CPAP failure. However, the receiver-operating characteristics curves showed that excursions of right and left hemi-diaphragm both before and after CPAP application, had highest accuracies in predicting CPAP failure (AUC 0.84, 0.80 and 0.86, 0.78, respectively; p < .001). CONCLUSION: Diaphragmatic excursion can be a useful parameter to predict the failure of CPAP in preterm neonates with respiratory distress.

13.
Bioeng Transl Med ; 8(6): e10490, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38023718

RESUMO

Despite being a convenient clinical substrate for biomonitoring, saliva's widespread utilization has not yet been realized. The non-Newtonian, heterogenous, and highly viscous nature of saliva complicate the development of automated fluid handling processes that are vital for accurate diagnoses. Furthermore, conventional saliva processing methods are resource and/or time intensive precluding certain testing capabilities, with these challenges aggravated during a pandemic. The conventional approaches may also alter analyte structure, reducing application opportunities in point-of-care diagnostics. To overcome these challenges, we introduce the SHEAR saliva collection device that mechanically processes saliva, in a rapid and resource-efficient way. We demonstrate the device's impact on reducing saliva's viscosity, improving sample's uniformity, and increasing diagnostic performance of a COVID-19 rapid antigen test. Additionally, a formal user experience study revealed generally positive comments. SHEAR saliva collection device may support realization of the saliva's potential, particularly in large-scale and/or resource-limited settings for global and community diagnostics.

14.
Immunohorizons ; 7(10): 708-717, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37889158

RESUMO

COVID-19 vaccination has significantly impacted the global pandemic by reducing the severity of infection, lowering rates of hospitalization, and reducing morbidity/mortality in healthy individuals. However, the degree of vaccine-induced protection afforded to renal transplant recipients who receive forms of maintenance immunosuppression remains poorly defined. This is particularly important when we factor in the emergence of SARS-CoV-2 variants of concern (VOCs) that have defined mutations that reduce the effectiveness of Ab responses targeting the Spike Ags from the ancestral Wuhan-Hu-1 variants employed in the most widely used vaccine formats. In this study, we describe a qualitative, longitudinal analysis of neutralizing Ab responses against multiple SARS-CoV-2 VOCs in 129 renal transplant recipients who have received three doses of the Pfizer-BioNTech COVID-19 vaccine (BNT162b2). Our results reveal a qualitative and quantitative reduction in the vaccine-induced serological response in transplant recipients versus healthy controls where only 51.9% (67 of 129) made a measurable vaccine-induced IgG response and 41.1% (53 of 129) exhibited a significant neutralizing Ab titer (based on a pseudovirus neutralization test value >50%). Analysis on the VOCs revealed strongest binding toward the wild-type Wuhan-Hu-1 and Delta variants but none with both of the Omicron variants tested (BA1 and BA2). Moreover, older transplant recipients and those who are on mycophenolic acid as part of their maintenance therapy exhibited a profound reduction in all of the analyzed vaccine-induced immune correlates. These data have important implications for how we monitor and manage transplant patients in the future as COVID-19 becomes endemic in our populations.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Vacina BNT162 , Transplantados , COVID-19/prevenção & controle , SARS-CoV-2
15.
Sci Rep ; 13(1): 21810, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071323

RESUMO

The scale and duration of neutralizing antibody responses targeting SARS-CoV-2 viral variants represents a critically important serological parameter that predicts protective immunity for COVID-19. In this study, we describe the development and employment of a new functional assay that measures neutralizing antibodies for SARS-CoV-2 and present longitudinal data illustrating the impact of age, sex and comorbidities on the kinetics and strength of vaccine-induced antibody responses for key variants in an Asian volunteer cohort. We also present an accurate quantitation of serological responses for SARS-CoV-2 that exploits a unique set of in-house, recombinant human monoclonal antibodies targeting the viral Spike and nucleocapsid proteins and demonstrate a reduction in neutralizing antibody titres across all groups 6 months post-vaccination. We also observe a marked reduction in the serological binding activity and neutralizing responses targeting recently newly emerged Omicron variants including XBB 1.5 and highlight a significant increase in cross-protective neutralizing antibody responses following a third dose (boost) of vaccine. These data illustrate how key virological factors such as immune escape mutations combined with host demographic factors such as age and sex of the vaccinated individual influence the strength and duration of cross-protective serological immunity for COVID-19.


Assuntos
COVID-19 , Vacinas , Humanos , SARS-CoV-2 , Anticorpos Amplamente Neutralizantes , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Emprego , Vacinação , Anticorpos Antivirais
16.
Front Microbiol ; 13: 887251, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847117

RESUMO

Antimicrobial resistance in clinically important microbes has emerged as an unmet challenge in global health. Extensively drug-resistant bacterial pathogens have cropped up lately defying the action of even the last resort of antibiotics. This has led to a huge burden in the health sectors and increased morbidity and mortality rate across the world. The dwindling antibiotic discovery pipeline and rampant usage of antibiotics has set the alarming bells necessitating immediate actions to combat this looming threat. Various alternatives to discovery of new antibiotics are gaining attention such as reversing the antibiotic resistance and hence reviving the arsenal of antibiotics in hand. Antibiotic resistance reversal is mainly targeted against the antibiotic resistance mechanisms, which potentiates the effective action of the antibiotic. Such compounds are referred to as resistance breakers or antibiotic adjuvants/potentiators that work in conjunction with antibiotics. Many studies have been conducted for the identification of compounds, which decrease the permeability barrier, expression of efflux pumps and the resistance encoding enzymes. Compounds targeting the stability, inheritance and dissemination of the mobile genetic elements linked with the resistance genes are also potential candidates to curb antibiotic resistance. In pursuit of such compounds various natural sources and synthetic compounds have been harnessed. The activities of a considerable number of compounds seem promising and are currently at various phases of clinical trials. This review recapitulates all the studies pertaining to the use of antibiotic potentiators for the reversal of antibiotic resistance and what the future beholds for their usage in clinical settings.

17.
Artigo em Inglês | MEDLINE | ID: mdl-35935741

RESUMO

In the current era, the increased demand of healthy food rich in antioxidants, vitamins and minerals and those having therapeutic value has led to over-exploitation of major agricultural and medicinal plants. This overburden can be reduced by an efficient utilization of underutilized plants with nutritional and medicinal importance. These underutilized plants are neglected or undervalued 'minor' crops having low production and sale. These less documented and less studied group of underutilized plants are considered as a rich source of various phytochemicals and secondary metabolites having bioactive compounds. These underutilized wild herbs that have not gained much attention from commercial as well as scientific community were selected for the present study. The present review elucidates the significance of these plants and recent biotechnological methods to conserve them. The present study on such food and medically important herbs would contribute in a wide recognition of their benefits for our society.

18.
Prog Mol Biol Transl Sci ; 192(1): 205-229, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36280320

RESUMO

Malnutrition is a global health issue and the leading cause of childhood morbidity and mortality under 5 years old. Malnutrition comprises undernutrition (stunting, wasting, underweight), overweight, and obesity. Infancy and child malnutrition are substantially influenced by a number of variables, such as insufficient nutrients, early birth, intestinal inflammation, and gastrointestinal tract microbiota. A variety of environmental factors have been identified that modulate the structure and diversity of newborns' gut microbiomes and their long-term health. Significant data demonstrate that the functional potency and compositional diversity of the microbiome differ in different types of malnutrition. The divergence in the gut microbiome composition between malnourished and healthy children can be observed at an age as young as 12 months. This focuses on variations in the gut microbiome that may influence adult obesity/health status, beginning in the early years of life. The therapeutic potential of supporting a healthy microbiome in malnourished children is being studied as a technique to aid in the fight against malnutrition. The goal of this chapter was to determine the makeup of gut microbiota in obese and undernourished children under the age of 5 years.


Assuntos
Microbioma Gastrointestinal , Desnutrição , Recém-Nascido , Criança , Adulto , Humanos , Lactente , Pré-Escolar , Disbiose/complicações , Trato Gastrointestinal , Obesidade
19.
Front Immunol ; 13: 886442, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844549

RESUMO

Systemic Autoimmune Rheumatic Diseases (SARDs) are characterized by the production of anti-nuclear antibodies (ANAs). ANAs are also seen in healthy individuals and can be detected years before disease onset in SARD. Both the immunological changes that promote development of clinical symptoms in SARD and those that prevent autoimmunity in asymptomatic ANA+ individuals (ANA+ NS) remain largely unexplored. To address this question, we used flow cytometry to examine peripheral blood immune populations in ANA+ individuals, with and without SARD, including 20 individuals who subsequently demonstrated symptom progression. Several immune populations were expanded in ANA+ individuals with and without SARD, as compared with ANA- healthy controls, particularly follicular and peripheral T helper, and antibody-producing B cell subsets. In ANA+ NS individuals, there were significant increases in T regulatory subsets and TGF-ß1 that normalized in SARD patients, whereas in SARD patients there were increases in Th2 and Th17 helper cell levels as compared with ANA+ NS individuals, resulting in a shift in the balance between inflammatory and regulatory T cell subsets. Patients with SARD also had increases in the proportion of pro-inflammatory innate immune cell populations, such as CD14+ myeloid dendritic cells, and intermediate and non-classical monocytes, as compared to ANA+ NS individuals. When comparing ANA+ individuals without SARD who progressed clinically over the subsequent 2 years with those who did not, we found that progressors had significantly increased T and B cell activation, as well as increased levels of LAG3+ T regulatory cells and TGF-ß1. Collectively, our findings suggest that active immunoregulation prevents clinical autoimmunity in ANA+ NS and that this becomes impaired in patients who progress to SARD, resulting in an imbalance favoring inflammation.


Assuntos
Doenças Autoimunes , Doenças Reumáticas , Anticorpos Antinucleares , Autoimunidade , Humanos , Linfócitos T Reguladores
20.
Front Pediatr ; 10: 949756, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186648

RESUMO

COVID-19 can be severe in pregnant women, and have adverse consequences for the subsequent infant. We profiled the post-infectious immune responses in maternal and child blood as well as breast milk in terms of antibody and cytokine expression and performed histopathological studies on placentae obtained from mothers convalescent from antenatal COVID-19. Seventeen mother-child dyads (8 cases of antenatal COVID-19 and 9 healthy unrelated controls; 34 individuals in total) were recruited to the Gestational Immunity For Transfer (GIFT) study. Maternal and infant blood, and breast milk samples were collected over the first year of life. All samples were analyzed for IgG and IgA against whole SARS-CoV-2 spike protein, the spike receptor-binding domain (RBD), and previously reported immunodominant epitopes, as well as cytokine levels. The placentae were examined microscopically. The study is registered at clinicaltrials.gov under the identifier NCT04802278. We found high levels of virus-specific IgG in convalescent mothers and similarly elevated titers in newborn children. Thus, antenatal SARS-CoV-2 infection led to high plasma titers of virus-specific antibodies in infants postnatally. However, this waned within 3-6 months of life. Virus neutralization by plasma was not uniformly achieved, and the presence of antibodies targeting known immunodominant epitopes did not assure neutralization. Virus-specific IgA levels were variable among convalescent individuals' sera and breast milk. Antibody transfer ratios and the decay of transplacentally transferred virus-specific antibodies in neonatal circulation resembled that for other pathogens. Convalescent mothers showed signs of chronic inflammation marked by persistently elevated IL17RA levels in their blood. Four placentae presented signs of acute inflammation, particularly in the subchorionic region, marked by neutrophil infiltration even though > 50 days had elapsed between virus clearance and delivery. Administration of a single dose of BNT162b2 mRNA vaccine to mothers convalescent from antenatal COVID-19 increased virus-specific IgG and IgA titers in breast milk, highlighting the importance of receiving the vaccine even after natural infection with the added benefit of enhanced passive immunity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa