RESUMO
Two-dimensional (2D) coupled resonant optical waveguide (CROW), exhibiting topological edge states, provides an efficient platform for designing integrated topological photonic devices. In this paper, we propose an experimentally feasible design of 2D honeycomb CROW photonic structure. The characteristic optical system possesses two-fold and three-fold Dirac points at different positions in the Brillouin zone. The effective gauge fields implemented by the intrinsic pseudo-spin-orbit interaction open up topologically nontrivial bandgaps through the Dirac points. Spatial lattice geometries allow destructive wave interference, leading to a dispersionless, near-flat energy band in the vicinity of the three-fold Dirac point in the telecommunication frequency regime. This nontrivial structure with a near-flat band yields topologically protected edge states. These characteristics underpin the fundamental importance as well as the potential applications in various optical devices. Based on the honeycomb CROW lattice, we design the shape-independent topological cavity and the beam splitter, which demonstrate the relevance for a wide range of photonic applications.
RESUMO
The field of topological photonic crystals has attracted growing interest since the inception of optical analog of quantum Hall effect proposed in 2008. Photonic band structures embraced topological phases of matter, have spawned a novel platform for studying topological phase transitions and designing topological optical devices. Here, we present a brief review of topological photonic crystals based on different material platforms, including all-dielectric systems, metallic materials, optical resonators, coupled waveguide systems, and other platforms. Furthermore, this review summarizes recent progress on topological photonic crystals, such as higherorder topological photonic crystals, non-Hermitian photonic crystals, and nonlinear photonic crystals. These studies indicate that topological photonic crystals as versatile platforms have enormous potential applications in maneuvering the flow of light.
RESUMO
The exploration of quantum-inspired symmetries in optical and photonic systems has witnessed immense research interest both fundamentally and technologically in a wide range of subject areas in physics and engineering. One of the principal emerging fields in this context is non-Hermitian physics based on parity-time symmetry, originally proposed in the studies pertaining to quantum mechanics and quantum field theory and recently ramified into a diverse set of areas, particularly in optics and photonics. The intriguing physical effects enabled by non-Hermitian physics and PT symmetry have enhanced significant application prospects and engineering of novel materials. In addition, there has been increasing research interest in many emerging directions beyond optics and photonics. Here, the state-of-the art developments in the field of complex non-Hermitian physics based on PT symmetry in various physical settings are brought together, and key concepts, a background, and a detailed perspective on new emerging directions are described. It can be anticipated that this trendy field of interest will be indispensable in providing new perspectives in maneuvering the flow of light in the diverse physical platforms in optics, photonics, condensed matter, optoelectronics, and beyond, and will offer distinctive application prospects in novel functional materials.