Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Annu Rev Biochem ; 83: 487-517, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24905786

RESUMO

The functional organization of eukaryotic DNA into chromatin uses histones as components of its building block, the nucleosome. Histone chaperones, which are proteins that escort histones throughout their cellular life, are key actors in all facets of histone metabolism; they regulate the supply and dynamics of histones at chromatin for its assembly and disassembly. Histone chaperones can also participate in the distribution of histone variants, thereby defining distinct chromatin landscapes of importance for genome function, stability, and cell identity. Here, we discuss our current knowledge of the known histone chaperones and their histone partners, focusing on histone H3 and its variants. We then place them into an escort network that distributes these histones in various deposition pathways. Through their distinct interfaces, we show how they affect dynamics during DNA replication, DNA damage, and transcription, and how they maintain genome integrity. Finally, we discuss the importance of histone chaperones during development and describe how misregulation of the histone flow can link to disease.


Assuntos
Cromatina/química , Chaperonas de Histonas/química , Histonas/química , Nucleossomos/química , Animais , Proteínas de Ciclo Celular/metabolismo , DNA/química , Dano ao DNA , Replicação do DNA , DNA Cruciforme/química , Histonas/metabolismo , Humanos , Ligação Proteica
2.
Genes Dev ; 31(5): 463-480, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28356341

RESUMO

In mammals, centromere definition involves the histone variant CENP-A (centromere protein A), deposited by its chaperone, HJURP (Holliday junction recognition protein). Alterations in this process impair chromosome segregation and genome stability, which are also compromised by p53 inactivation in cancer. Here we found that CENP-A and HJURP are transcriptionally up-regulated in p53-null human tumors. Using an established mouse embryonic fibroblast (MEF) model combining p53 inactivation with E1A or HRas-V12 oncogene expression, we reproduced a similar up-regulation of HJURP and CENP-A. We delineate functional CDE/CHR motifs within the Hjurp and Cenpa promoters and demonstrate their roles in p53-mediated repression. To assess the importance of HJURP up-regulation in transformed murine and human cells, we used a CRISPR/Cas9 approach. Remarkably, depletion of HJURP leads to distinct outcomes depending on their p53 status. Functional p53 elicits a cell cycle arrest response, whereas, in p53-null transformed cells, the absence of arrest enables the loss of HJURP to induce severe aneuploidy and, ultimately, apoptotic cell death. We thus tested the impact of HJURP depletion in pre-established allograft tumors in mice and revealed a major block of tumor progression in vivo. We discuss a model in which an "epigenetic addiction" to the HJURP chaperone represents an Achilles' heel in p53-deficient transformed cells.


Assuntos
Autoantígenos/metabolismo , Transformação Celular Neoplásica/genética , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes p53/genética , Oncogenes/genética , Motivos de Aminoácidos/genética , Animais , Autoantígenos/genética , Linhagem Celular , Células Cultivadas , Proteína Centromérica A , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/genética , Proteínas de Ligação a DNA/genética , Feminino , Deleção de Genes , Instabilidade Genômica/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Animais
3.
Molecules ; 27(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35566268

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic. While the development of vaccines and the emergence of antiviral therapeutics is promising, alternative strategies to combat COVID-19 (and potential future pandemics) remain an unmet need. Coronaviruses feature a unique mechanism that may present opportunities for therapeutic intervention: the RNA polymerase complex of coronaviruses is distinct in its ability to proofread and remove mismatched nucleotides during genome replication and transcription. The proofreading activity has been linked to the exonuclease (ExoN) activity of non-structural protein 14 (NSP14). Here, we review the role of NSP14, and other NSPs, in SARS-CoV-2 replication and describe the assays that have been developed to assess the ExoN function. We also review the nucleoside analogs and non-nucleoside inhibitors known to interfere with the proofreading activity of NSP14. Although not yet validated, the potential use of non-nucleoside proofreading inhibitors in combination with chain-terminating nucleosides may be a promising avenue for the development of anti-CoV agents.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Exorribonucleases/metabolismo , Humanos , Pandemias , RNA Viral/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
4.
Mol Cell ; 44(6): 918-27, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22195965

RESUMO

Proper genome packaging requires coordination of both DNA and histone metabolism. While histone gene transcription and RNA processing adequately provide for scheduled needs, how histone supply adjusts to unexpected changes in demand remains unknown. Here, we reveal that the histone chaperone nuclear autoantigenic sperm protein (NASP) protects a reservoir of soluble histones H3-H4. The importance of NASP is revealed upon histone overload, engagement of the reservoir during acute replication stress, and perturbation of Asf1 activity. The reservoir can be fine-tuned, increasing or decreasing depending on the level of NASP. Our data suggest that NASP does so by balancing the activity of the heat shock proteins Hsc70 and Hsp90 to direct H3-H4 for degradation by chaperone-mediated autophagy. These insights into NASP function and the existence of a tunable reservoir in mammalian cells demonstrate that contingency is integrated into the histone supply chain to respond to unexpected changes in demand.


Assuntos
Autoantígenos/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Autofagia , Células HEK293 , Células HeLa , Humanos , Solubilidade , Células Tumorais Cultivadas
5.
Nucleic Acids Res ; 45(20): 11700-11710, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28977641

RESUMO

Newly synthesized histones H3 and H4 undergo a cascade of maturation steps to achieve proper folding and to establish post-translational modifications prior to chromatin deposition. Acetylation of H4 on lysines 5 and 12 by the HAT1 acetyltransferase is observed late in the histone maturation cascade. A key question is to understand how to establish and regulate the distinct timing of sequential modifications and their biological significance. Here, we perform proteomic analysis of the newly synthesized histone H4 complex at the earliest time point in the cascade. In addition to known binding partners Hsp90 and Hsp70, we also identify for the first time two subunits of the histone acetyltransferase inhibitor complex (INHAT): PP32 and SET/TAF-Iß. We show that both proteins function to prevent HAT1-mediated H4 acetylation in vitro. When PP32 and SET/TAF-Iß protein levels are down-regulated in vivo, we detect hyperacetylation on lysines 5 and 12 and other H4 lysine residues. Notably, aberrantly acetylated H4 is less stable and this reduces the interaction with Hsp90. As a consequence, PP32 and SET/TAF-Iß depleted cells show an S-phase arrest. Our data demonstrate a novel function of PP32 and SET/TAF-Iß and provide new insight into the mechanisms regulating acetylation of newly synthesized histone H4.


Assuntos
Histona Acetiltransferases/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Western Blotting , Proteínas de Ligação a DNA , Proteínas de Choque Térmico HSP90/metabolismo , Células HeLa , Chaperonas de Histonas/genética , Histonas/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lisina/genética , Lisina/metabolismo , Espectrometria de Massas , Proteínas Nucleares , Ligação Proteica , Proteômica , Interferência de RNA , Proteínas de Ligação a RNA , Fatores de Transcrição/genética
6.
Nucleic Acids Res ; 43(19): 9097-106, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26405197

RESUMO

Histone post-translational modifications are key contributors to chromatin structure and function, and participate in the maintenance of genome stability. Understanding the establishment and maintenance of these marks, along with their misregulation in pathologies is thus a major focus in the field. While we have learned a great deal about the enzymes regulating histone modifications on nucleosomal histones, much less is known about the mechanisms establishing modifications on soluble newly synthesized histones. This includes methylation of lysine 9 on histone H3 (H3K9), a mark that primes the formation of heterochromatin, a critical chromatin landmark for genome stability. Here, we report that H3K9 mono- and dimethylation is imposed during translation by the methyltransferase SetDB1. We discuss the importance of these results in the context of heterochromatin establishment and maintenance and new therapeutic opportunities in pathologies where heterochromatin is perturbed.


Assuntos
Histonas/metabolismo , Lisina/metabolismo , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Células HeLa , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Humanos , Metilação , Proteínas Metiltransferases/metabolismo , Ribossomos/enzimologia
7.
Biochim Biophys Acta ; 1839(12): 1433-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24686120

RESUMO

In eukaryotic organisms, the replication of the DNA sequence and its organization into chromatin are critical to maintain genome integrity. Chromatin components, such as histone variants and histone post-translational modifications, along with the higher-order chromatin structure, impact several DNA metabolic processes, including replication, transcription, and repair. In this review we focus on lysine methylation and the relationships between this histone mark and chromatin replication. We first describe studies implicating lysine methylation in regulating early steps in the replication process. We then discuss chromatin reassembly following replication fork passage, where the incorporation of a combination of newly synthesized histones and parental histones can impact the inheritance of lysine methylation marks on the daughter strands. Finally, we elaborate on how the inheritance of lysine methylation can impact maintenance of the chromatin landscape, using heterochromatin as a model chromatin domain, and we discuss the potential mechanisms involved in this process.


Assuntos
Cromatina/metabolismo , Replicação do DNA , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Cromatina/genética , Humanos , Metilação
8.
Mol Biol Evol ; 30(8): 1853-66, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23645555

RESUMO

Gene duplication is regarded as the main source of adaptive functional novelty in eukaryotes. Processes such as neo- and subfunctionalization impact the evolution of paralogous proteins where functional divergence is frequently key to retain the gene copies. Here, we examined antisilencing function 1 (ASF1), a conserved eukaryotic H3-H4 histone chaperone, involved in histone dynamics during replication, transcription, and DNA repair. Although yeast feature a single ASF1 protein, two paralogs exist in most vertebrates, termed ASF1a and ASF1b, with distinct cellular roles in mammals. To explain this division of tasks, we integrated evolutionary and comparative genomic analyses with biochemical and structural approaches. First, we show that a duplication event at the ancestor of jawed vertebrates, followed by ASF1a relocation into an intron of the minichromosome maintenance complex component 9 (MCM9) gene at the ancestor of tetrapods, provided a different genomic environment for each paralog with marked differences of GC content and DNA replication timing. Second, we found signatures of positive selection in the N- and C-terminal regions of ASF1a and ASF1b. Third, we demonstrate that regions outside the primary interaction surface are key for the preferential interactions of the human paralogs with distinct H3-H4 chaperones. On the basis of these data, we propose that ASF1 experienced subfunctionalization shaped by the adaptation of the genes to their respective genomic context, reflecting a case of genomic context-driven escape from adaptive conflict.


Assuntos
Adaptação Biológica , Evolução Molecular , Genômica , Chaperonas de Histonas/genética , Sequência de Aminoácidos , Animais , Composição de Bases , Teorema de Bayes , Duplicação Gênica , Regulação da Expressão Gênica , Chaperonas de Histonas/metabolismo , Humanos , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Seleção Genética , Alinhamento de Sequência , Vertebrados
9.
Antiviral Res ; 200: 105279, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35278580

RESUMO

The 3-chymotrypsin-like cysteine protease (3CLpro) of severe acute respiratory syndrome conoravirus 2 (SARS-CoV-2) remains a promising therapeutic target to combat COVID-19. Our group recently described a novel duplexed biochemical assay that combines self-assembled monolayers of alkanethiolates on gold with matrix assisted laser desorption ionization (MALDI) time of flight (TOF) mass spectrometry (MS) to simultaneously measure 3CLpro and human rhinovirus 3C protease activities. This study describes applying the assay for the completion of a high-throughput duplexed screen of 300,000 diverse, drug-like small molecules in 3 days. The hits were confirmed and evaluated in dose response analyses against recombinant 3CLpro, HRV3C, and the human Cathepsin L proteases. The 3CLpro specific inhibitors were further assessed for activity in cellular cytotoxicity and anti-viral assays. Structure activity relationship studies informed on structural features required for activity and selectivity to 3CLpro over HRV3C. These results will guide the optimization of 3CLpro selective inhibitors to combat COVID-19 along with antiviral compounds against coronaviruses and rhinoviruses.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/química , Antivirais/farmacologia , Humanos , Espectrometria de Massas , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Rhinovirus
10.
SLAS Discov ; 26(6): 775-782, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33754845

RESUMO

Arginase-1, an enzyme that catalyzes the reaction of L-arginine to L-ornithine, is implicated in the tumor immune response and represents an interesting therapeutic target in immuno-oncology. Initiating arginase drug discovery efforts remains a challenge due to a lack of suitable high-throughput assay methodologies. This report describes the combination of self-assembled monolayers and matrix-assisted laser desorption ionization mass spectrometry to enable the first label-free and high-throughput assay for arginase activity. The assay was optimized for kinetically balanced conditions and miniaturized, while achieving a robust assay (Z-factor > 0.8) and a significant assay window [signal-to-background ratio > 20] relative to fluorescent approaches. To validate the assay, the inhibition of the reference compound nor-NOHA (Nω-hydroxy-nor-L-arginine) was evaluated, and the IC50 measured to be in line with reported results (IC50 = 180 nM). The assay was then used to complete a screen of 175,000 compounds, demonstrating the high-throughput capacity of the approach. The label-free format also eliminates opportunities for false-positive results due to interference from library compounds and optical readouts. The assay methodology described here enables new opportunities for drug discovery for arginase and, due to the assay flexibility, can be more broadly applicable for measuring other amino acid-metabolizing enzymes.


Assuntos
Arginase/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Arginase/análise , Arginase/antagonistas & inibidores , Arginina/metabolismo , Bioensaio , Biotina/metabolismo , Dimerização , Descoberta de Drogas/métodos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Humanos , Cinética , Ornitina/metabolismo , Bibliotecas de Moléculas Pequenas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
11.
SLAS Discov ; 26(8): 974-983, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34151629

RESUMO

Affinity selection mass spectrometry (ASMS) has emerged as a powerful high-throughput screening tool used in drug discovery to identify novel ligands against therapeutic targets. This report describes the first high-throughput screen using a novel self-assembled monolayer desorption ionization (SAMDI)-ASMS methodology to reveal ligands for the human rhinovirus 3C (HRV3C) protease. The approach combines self-assembled monolayers of alkanethiolates on gold with matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry (MS), a technique termed SAMDI-ASMS. The primary screen of more than 100,000 compounds in pools of 8 compounds per well was completed in less than 8 h, and informs on the binding potential and selectivity of each compound. Initial hits were confirmed in follow-up SAMDI-ASMS experiments in single-concentration and dose-response curves. The ligands identified by SAMDI-ASMS were further validated using differential scanning fluorimetry (DSF) and in functional protease assays against HRV3C and the related SARS-CoV-2 3CLpro enzyme. SAMDI-ASMS offers key benefits for drug discovery over traditional ASMS approaches, including the high-throughput workflow and readout, minimizing compound misbehavior by using smaller compound pools, and up to a 50-fold reduction in reagent consumption. The flexibility of this novel technology opens avenues for high-throughput ASMS assays of any target, thereby accelerating drug discovery for diverse diseases.


Assuntos
Tratamento Farmacológico da COVID-19 , Ensaios de Triagem em Larga Escala , Rhinovirus/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Proteases Virais 3C/química , COVID-19/virologia , Descoberta de Drogas , Humanos , Ligantes , Espectrometria de Massas , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Bibliotecas de Moléculas Pequenas/isolamento & purificação , Bibliotecas de Moléculas Pequenas/uso terapêutico
12.
SLAS Discov ; 26(6): 766-774, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33870746

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for the global COVID-19 pandemic. Nonstructural protein 14 (NSP14), which features exonuclease (ExoN) and guanine N7 methyltransferase activity, is a critical player in SARS-CoV-2 replication and fidelity and represents an attractive antiviral target. Initiating drug discovery efforts for nucleases such as NSP14 remains a challenge due to a lack of suitable high-throughput assay methodologies. This report describes the combination of self-assembled monolayers and matrix-assisted laser desorption ionization mass spectrometry to enable the first label-free and high-throughput assay for NSP14 ExoN activity. The assay was used to measure NSP14 activity and gain insight into substrate specificity and the reaction mechanism. Next, the assay was optimized for kinetically balanced conditions and miniaturized, while achieving a robust assay (Z factor > 0.8) and a significant assay window (signal-to-background ratio > 200). Screening 10,240 small molecules from a diverse library revealed candidate inhibitors, which were counterscreened for NSP14 selectivity and RNA intercalation. The assay methodology described here will enable, for the first time, a label-free and high-throughput assay for NSP14 ExoN activity to accelerate drug discovery efforts and, due to the assay flexibility, can be more broadly applicable for measuring other enzyme activities from other viruses or implicated in various pathologies.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Exonucleases/antagonistas & inibidores , Exorribonucleases/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , RNA Viral/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/química , COVID-19/virologia , Clonagem Molecular , Ensaios Enzimáticos , Inibidores Enzimáticos/química , Escherichia coli/genética , Escherichia coli/metabolismo , Exonucleases/genética , Exonucleases/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Especificidade por Substrato , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
13.
Antiviral Res ; 187: 105020, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33515606

RESUMO

The 3-chymotrypsin-like cysteine protease (3CLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is considered a major target for the discovery of direct antiviral agents. We previously reported the evaluation of SARS-CoV-2 3CLpro inhibitors in a novel self-assembled monolayer desorption ionization mass spectrometry (SAMDI-MS) enzymatic assay (Gurard-Levin et al., 2020). The assay was further improved by adding the rhinovirus HRV3C protease to the same well as the SARS-CoV-2 3CLpro enzyme. High substrate specificity for each enzyme allowed the proteases to be combined in a single assay reaction without interfering with their individual activities. This novel duplex assay was used to profile a diverse set of reference protease inhibitors. The protease inhibitors were grouped into three categories based on their relative potency against 3CLpro and HRV3C including those that are: equipotent against 3CLpro and HRV3C (GC376 and calpain inhibitor II), selective for 3CLpro (PF-00835231, calpain inhibitor XII, boceprevir), and selective for HRV3C (rupintrivir). Structural analysis showed that the combination of minimal interactions, conformational flexibility, and limited bulk allows GC376 and calpain inhibitor II to potently inhibit both enzymes. In contrast, bulkier compounds interacting more tightly with pockets P2, P3, and P4 due to optimization for a specific target display a more selective inhibition profile. Consistently, the most selective viral protease inhibitors were relatively weak inhibitors of human cathepsin L. Taken together, these results can guide the design of cysteine protease inhibitors that are either virus-specific or retain a broad antiviral spectrum against coronaviruses and rhinoviruses.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Proteases/farmacologia , Rhinovirus/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Antivirais/química , Sítios de Ligação , Catepsina L/metabolismo , Descoberta de Drogas , Glicoproteínas/farmacologia , Humanos , Cinética , Modelos Moleculares , Inibidores de Proteases/química , Pirrolidinas/farmacologia , Ácidos Sulfônicos
14.
Epigenetics Chromatin ; 13(1): 6, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32070414

RESUMO

BACKGROUND: Maintaining a proper supply of soluble histones throughout the cell cycle is important to ensure chromatin and genome stability. Following their synthesis, histones undergo a series of maturation steps to prepare them for deposition onto chromatin. RESULTS: Here, we identify the lysine demethylase JMJD1B as a novel player in the maturation cascade that contributes to regulate histone provision. We find that depletion of JMJD1B increases the protein levels of the histone chaperone tNASP leading to an accumulation of newly synthesized histones H3 and H4 at early steps of the histone maturation cascade, which perturbs chromatin assembly. Furthermore, we find a high rate of JMJD1B mutations in cancer patients, and a correlation with genomic instability. CONCLUSIONS: Our data support a role for JMJD1B in fine-tuning histone supply to maintain genome integrity, opening novel avenues for cancer therapeutics.


Assuntos
Instabilidade Genômica , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Processamento de Proteína Pós-Traducional , Células HeLa , Código das Histonas , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Mutação
15.
SLAS Discov ; 25(4): 361-371, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31585521

RESUMO

A variety of covalent modifications of RNA have been identified and demonstrated to affect RNA processing, stability, and translation. Methylation of adenosine at the N6 position (m6A) in messenger RNA (mRNA) is currently the most well-studied RNA modification and is catalyzed by the RNA methyltransferase complex METTL3/METTL14. Once generated, m6A can modulate mRNA splicing, export, localization, degradation, and translation. Although potent and selective inhibitors exist for several members of the Type I S-adenosylmethionine (SAM)-dependent methyltransferase family, no inhibitors have been reported for METTL3/METTL14 to date. To facilitate drug discovery efforts, a sensitive and robust mass spectrometry-based assay for METTL3/METTL14 using self-assembled monolayer desorption/ionization (SAMDI) technology has been developed. The assay uses an 11-nucleotide single-stranded RNA compared to a previously reported 27-nucleotide substrate. IC50 values of mechanism-based inhibitors S-adenosylhomocysteine (SAH) and sinefungin (SFG) are comparable between the SAMDI and radiometric assays that use the same substrate. This work demonstrates that SAMDI technology is amenable to RNA substrates and can be used for high-throughput screening and compound characterization for RNA-modifying enzymes.


Assuntos
Espectrometria de Massas/métodos , Metiltransferases/genética , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/farmacologia , Descoberta de Drogas/tendências , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Metilação/efeitos dos fármacos , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Processamento Pós-Transcricional do RNA/genética , Estabilidade de RNA/efeitos dos fármacos , Estabilidade de RNA/genética , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , S-Adenosil-Homocisteína/farmacologia
16.
Antiviral Res ; 182: 104924, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32896566

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic that began in 2019. The coronavirus 3-chymotrypsin-like cysteine protease (3CLpro) controls replication and is therefore considered a major target for antiviral discovery. This study describes the evaluation of SARS-CoV-2 3CLpro inhibitors in a novel self-assembled monolayer desorption ionization mass spectrometry (SAMDI-MS) enzymatic assay. Compared with a traditional FRET readout, the label-free SAMDI-MS assay offers greater sensitivity and eliminates false positive inhibition from compound interference with the optical signal. The SAMDI-MS assay was optimized and validated with known inhibitors of coronavirus 3CLpro such as GC376 (IC50 = 0.060 µM), calpain inhibitors II and XII (IC50 ~20-25 µM). The FDA-approved drugs shikonin, disulfiram, and ebselen did not inhibit SARS-CoV-2 3CLpro activity in the SAMDI-MS assay under physiologically relevant reducing conditions. The three drugs did not directly inhibit human ß-coronavirus OC-43 or SARS-CoV-2 in vitro, but instead induced cell death. In conclusion, the SAMDI-MS 3CLpro assay, combined with antiviral and cytotoxic assessment, provides a robust platform to evaluate antiviral agents directed against SARS-CoV-2.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/enzimologia , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Proteínas não Estruturais Virais/antagonistas & inibidores , COVID-19 , Proteases 3C de Coronavírus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Glicoproteínas/farmacologia , Células HeLa , Humanos , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , SARS-CoV-2 , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Tratamento Farmacológico da COVID-19
17.
Cell Chem Biol ; 26(11): 1573-1585.e10, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31543461

RESUMO

Anti-silencing function 1 (ASF1) is a conserved H3-H4 histone chaperone involved in histone dynamics during replication, transcription, and DNA repair. Overexpressed in proliferating tissues including many tumors, ASF1 has emerged as a promising therapeutic target. Here, we combine structural, computational, and biochemical approaches to design peptides that inhibit the ASF1-histone interaction. Starting from the structure of the human ASF1-histone complex, we developed a rational design strategy combining epitope tethering and optimization of interface contacts to identify a potent peptide inhibitor with a dissociation constant of 3 nM. When introduced into cultured cells, the inhibitors impair cell proliferation, perturb cell-cycle progression, and reduce cell migration and invasion in a manner commensurate with their affinity for ASF1. Finally, we find that direct injection of the most potent ASF1 peptide inhibitor in mouse allografts reduces tumor growth. Our results open new avenues to use ASF1 inhibitors as promising leads for cancer therapy.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Desenho de Fármacos , Chaperonas Moleculares/metabolismo , Peptídeos/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Epitopos/química , Epitopos/metabolismo , Feminino , Histonas/química , Histonas/metabolismo , Humanos , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Chaperonas Moleculares/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Peptídeos/metabolismo , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Termodinâmica , Transplante Homólogo
18.
Biochemistry ; 47(23): 6242-50, 2008 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-18470998

RESUMO

This paper introduces a flexible assay for characterizing the activities of the histone deacetylase enzymes. The approach combines mass spectrometry with self-assembled monolayers that present acetylated peptides and enables a label-free and one-step assay of this biochemical activity. The assay was used to characterize the activity of HDAC8 toward peptides taken from the N-terminal tail of the H4 histone and reveals that a distal region of the peptide substrate interacts with the deacetylase at an exosite and contributes to the activity of the substrate. Specifically, a peptide corresponding to residues 8-19 of H4 and having lysine 12 acetylated is an active substrate, but removal of the KRHR (residues 16-19) sequence abolishes activity. Mutation of glycine 11 to arginine in the peptide lacking the KRHR sequence restores activity, demonstrating that both local and distal sequences act synergistically to regulate the activity of the HDAC. Assays with peptides bearing multiply acetylated residues, but in which each acetyl group is isotopically labeled, permit studies of the processive deacetylation of peptides. Peptide substrates having an extended sequence that includes K20 were used to demonstrate that methylation of this residue directly affects HDAC8 activity at K12. This work provides a mechanistic basis for the regulation of HDAC activities by distal sequences and may contribute to studies aimed at evaluating the role of the histone code in regulating gene expression.


Assuntos
Histona Desacetilases/química , Histona Desacetilases/metabolismo , Histonas/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Arginina , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Regulação Enzimológica da Expressão Gênica , Glicina , Histona Desacetilases/genética , Histonas/química , Humanos , Cinética , Modelos Moleculares , Oligopeptídeos/química , Fragmentos de Peptídeos/química , Conformação Proteica , Proteínas Repressoras/genética , Especificidade por Substrato
19.
Nat Commun ; 9(1): 3181, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30093638

RESUMO

DNA replication is a challenge for the faithful transmission of parental information to daughter cells, as both DNA and chromatin organization must be duplicated. Replication stress further complicates the safeguard of epigenome integrity. Here, we investigate the transmission of the histone variants H3.3 and H3.1 during replication. We follow their distribution relative to replication timing, first in the genome and, second, in 3D using super-resolution microscopy. We find that H3.3 and H3.1 mark early- and late-replicating chromatin, respectively. In the nucleus, H3.3 forms domains, which decrease in density throughout replication, while H3.1 domains increase in density. Hydroxyurea impairs local recycling of parental histones at replication sites. Similarly, depleting the histone chaperone ASF1 affects recycling, leading to an impaired histone variant landscape. We discuss how faithful transmission of histone variants involves ASF1 and can be impacted by replication stress, with ensuing consequences for cell fate and tumorigenesis.


Assuntos
Proteínas de Ciclo Celular/química , Cromatina/química , Replicação do DNA , Histonas/química , Linhagem da Célula , DNA/química , Epigênese Genética , Genoma Humano , Células HeLa , Humanos , Hidroxiureia/química , Microscopia , Microscopia de Fluorescência , Chaperonas Moleculares , Nucleossomos/química , Fase S
20.
Mol Cancer Ther ; 15(7): 1768-77, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27196757

RESUMO

The limited capacity to predict a patient's response to distinct chemotherapeutic agents is a major hurdle in cancer management. The efficiency of a large fraction of current cancer therapeutics (radio- and chemotherapies) is influenced by chromatin structure. Reciprocally, alterations in chromatin organization may affect resistance mechanisms. Here, we explore how the misexpression of chromatin regulators-factors involved in the establishment and maintenance of functional chromatin domains-can inform about the extent of docetaxel response. We exploit Affymetrix and NanoString gene expression data for a set of chromatin regulators generated from breast cancer patient-derived xenograft models and patient samples treated with docetaxel. Random Forest classification reveals specific panels of chromatin regulators, including key components of the SWI/SNF chromatin remodeler, which readily distinguish docetaxel high-responders and poor-responders. Further exploration of SWI/SNF components in the comprehensive NCI-60 dataset reveals that the expression inversely correlates with docetaxel sensitivity. Finally, we show that loss of the SWI/SNF subunit BRG1 (SMARCA4) in a model cell line leads to enhanced docetaxel sensitivity. Altogether, our findings point toward chromatin regulators as biomarkers for drug response as well as therapeutic targets to sensitize patients toward docetaxel and combat drug resistance. Mol Cancer Ther; 15(7); 1768-77. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Cromatina/genética , Neoplasias/genética , Animais , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais , Cromatina/metabolismo , Análise por Conglomerados , Biologia Computacional/métodos , Bases de Dados Genéticas , Docetaxel , Perfilação da Expressão Gênica , Genes Essenciais , Humanos , Modelos Biológicos , Terapia de Alvo Molecular , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Testes Farmacogenômicos , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Taxoides/farmacologia , Moduladores de Tubulina/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa