Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 11(15)2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35954268

RESUMO

The physiological importance of NCX in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is not well characterized but may depend on the relative strength of the current, compared to adult cardiomyocytes, and on the exact spatial arrangement of proteins involved in Ca2+ extrusion. Here, we determined NCX currents and its contribution to action potential and force in hiPSC-CMs cultured in engineered heart tissue (EHT). The results were compared with data from rat and human left ventricular tissue. The NCX currents in hiPSC-CMs were larger than in ventricular cardiomyocytes isolated from human left ventricles (1.3 ± 0.2 pA/pF and 3.2 ± 0.2 pA/pF for human ventricle and EHT, respectively, p < 0.05). SEA0400 (10 µM) markedly shortened the APD90 in EHT (by 26.6 ± 5%, p < 0.05) and, to a lesser extent, in rat ventricular tissue (by 10.7 ± 1.6%, p < 0.05). Shortening in human left ventricular preparations was small and not different from time-matched controls (TMCs; p > 0.05). Force was increased by the NCX block in rat ventricle (by 31 ± 5.4%, p < 0.05) and EHT (by 20.8 ± 3.9%, p < 0.05), but not in human left ventricular preparations. In conclusion, hiPSC-CMs possess NCX currents not smaller than human left ventricular tissue. Robust NCX block-induced APD shortening and inotropy makes EHT an attractive pharmacological model.


Assuntos
Células-Tronco Pluripotentes Induzidas , Potenciais de Ação , Adulto , Animais , Ventrículos do Coração/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Ratos , Trocador de Sódio e Cálcio/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa