Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
J Am Chem Soc ; 143(8): 3104-3112, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33601880

RESUMO

Although photoinduced proton-coupled electron transfer (PCET) plays an essential role in photosynthesis, a full understanding of the mechanism is still lacking due to the complex nonequilibrium dynamics arising from the strongly coupled electronic and nuclear degrees of freedom. Here we report the photoinduced PCET dynamics of a biomimetic model system investigated by means of transient IR and two-dimensional electronic-vibrational (2DEV) spectroscopies, IR spectroelectrochemistry (IRSEC), and calculations utilizing long-range-corrected hybrid density functionals. This collective experimental and theoretical effort provides a nuanced picture of the complicated dynamics and synergistic motions involved in photoinduced PCET. In particular, the evolution of the 2DEV line shape, which is highly sensitive to the mixing of vibronic states, is interpreted by accurate computational modeling of the charge separated state and is shown to represent a gradual change in electron density distribution associated with a dihedral twist that occurs on a 120 fs time scale.

2.
Proc Natl Acad Sci U S A ; 114(28): E5513-E5521, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28652359

RESUMO

In photosynthetic organisms, protection against photooxidative stress due to singlet oxygen is provided by carotenoid molecules, which quench chlorophyll triplet species before they can sensitize singlet oxygen formation. In anoxygenic photosynthetic organisms, in which exposure to oxygen is low, chlorophyll-to-carotenoid triplet-triplet energy transfer (T-TET) is slow, in the tens of nanoseconds range, whereas it is ultrafast in the oxygen-rich chloroplasts of oxygen-evolving photosynthetic organisms. To better understand the structural features and resulting electronic coupling that leads to T-TET dynamics adapted to ambient oxygen activity, we have carried out experimental and theoretical studies of two isomeric carotenoporphyrin molecular dyads having different conformations and therefore different interchromophore electronic interactions. This pair of dyads reproduces the characteristics of fast and slow T-TET, including a resonance Raman-based spectroscopic marker of strong electronic coupling and fast T-TET that has been observed in photosynthesis. As identified by density functional theory (DFT) calculations, the spectroscopic marker associated with fast T-TET is due primarily to a geometrical perturbation of the carotenoid backbone in the triplet state induced by the interchromophore interaction. This is also the case for the natural systems, as demonstrated by the hybrid quantum mechanics/molecular mechanics (QM/MM) simulations of light-harvesting proteins from oxygenic (LHCII) and anoxygenic organisms (LH2). Both DFT and electron paramagnetic resonance (EPR) analyses further indicate that, upon T-TET, the triplet wave function is localized on the carotenoid in both dyads.


Assuntos
Clorofila/química , Transferência de Energia , Fotossíntese , Carotenoides/química , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Complexos de Proteínas Captadores de Luz , Luteína/química , Modelos Moleculares , Conformação Molecular , Oxigênio , Pigmentação , Porfirinas/química , Teoria Quântica , Espectrofotometria , Análise Espectral Raman
3.
J Am Chem Soc ; 141(36): 14057-14061, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31390197

RESUMO

Proton-coupled electron transfer (PCET) combines the movement of fundamental charged species to form an essential link between electron- and proton-transport reactions in bioenergetics and catalysis in general. The length scale over which proton transport may occur within PCET processes and the thermodynamic consequences of the resulting proton chemical potential to the oxidation reaction driving these PCET processes have not been generally established. Here we report the design of bioinspired molecules that employ oxidation-reduction processes to move reversibly two, three, and four protons via a Grotthuss-type mechanism along hydrogen-bonded networks up to ∼16 Šin length. These molecules are composed of benzimidazole moieties linking a phenol to the final proton acceptor, a cyclohexylimine. Following electrochemical oxidation of the phenol, the appearance of an infrared band at 1660 cm-1 signals proton arrival at the terminal basic site. Switching the electrode potential to reducing conditions reverses the proton translocation and resets the structure to the initial species. In addition to mimicking the first step of the iconic PCET process used by the Tyrz-His190 redox relay in photosystem II to oxidize water, this work specifically addresses theoretically and experimentally the length scale over which PCET processes may occur. The thermodynamic findings from these redox-driven, bioinspired "proton wires" have implications for understanding and rationally designing pumps for the generation of proton-motive force in artificial and reengineered photosynthesis, as well as for management of proton activity around catalytic sites, including those for water oxidation and oxygen reduction.


Assuntos
Benzimidazóis/metabolismo , Iminas/metabolismo , Fenóis/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Prótons , Benzimidazóis/química , Transporte de Elétrons , Iminas/química , Estrutura Molecular , Oxirredução , Fenóis/química , Complexo de Proteína do Fotossistema II/química
4.
Acc Chem Res ; 51(2): 445-453, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29309118

RESUMO

Artificial photosynthetic constructs can in principle operate more efficiently than natural photosynthesis because they can be rationally designed to optimize solar energy conversion for meeting human demands rather than the multiple needs of an organism competing for growth and reproduction in a complex ecosystem. The artificial photosynthetic constructs described in this Account consist primarily of covalently linked synthetic chromophores, electron donors and acceptors, and proton donors and acceptors that carry out the light absorption, electron transfer, and proton-coupled electron transfer (PCET) processes characteristic of photosynthetic cells. PCET is the movement of an electron from one site to another accompanied by proton transfer. PCET and the transport of protons over tens of angstroms are important in all living cells because they are a fundamental link between redox processes and the establishment of transmembrane gradients of proton electrochemical potential, known as proton-motive force (PMF), which is the unifying concept in bioenergetics. We have chosen a benzimidazole phenol (BIP) system as a platform for the study of PCET because with appropriate substitutions it is possible to design assemblies in which one or multiple proton transfers can accompany oxidation of the phenol. In BIP, oxidation of the phenol increases its acidity by more than ten pKa units; thus, electrochemical oxidation of the phenol is associated with a proton transfer to the imidazole. This is an example of a PCET process involving transfer of one electron and one proton, known as electron-proton transfer (EPT). When the benzimidazole moiety of BIP is substituted at the 4-position with good proton acceptor groups such as aliphatic amines, experimental and theoretical results indicate that two proton transfers occur upon one-electron oxidation of the phenol. This phenomenon is described as a one-electron-two-proton transfer (E2PT) process and results in translocation of protons over ∼7 Švia a Grotthuss-type mechanism, where the protons traverse a network of internally H-bonded sites. In the case of the E2TP process involving BIP analogues with amino group substituents, the thermodynamic price paid in redox potential to move a proton to the final proton acceptor is ∼300 mV. In this example, the decrease in redox potential limits the oxidizing power of the resulting phenoxyl radical. Thus, unlike the biological counterpart, the artificial construct is thermodynamically incapable of effectively advancing the redox state of a water oxidation catalyst. The design of systems where multiple proton transfer events are coupled to an oxidation reaction while a relatively high redox potential is maintained remains an outstanding challenge. The ability to control proton transfer and activity at defined distances and times is key to achieving proton management in the vicinity of catalysts operating at low overpotential in myriad biochemically important processes. Artificial photosynthetic constructs with well-defined structures, such as the ones described in this Account, can provide the means for discovering design principles upon which efficient redox catalysts for electrolysis and fuel cells can be based.

5.
J Am Chem Soc ; 140(45): 15450-15460, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30379075

RESUMO

Bioinspired constructs consisting of benzimidazole-phenol moieties bearing N-phenylimines as proton-accepting substituents have been designed to mimic the H-bond network associated with the TyrZ-His190 redox relay in photosystem II. These compounds provide a platform to theoretically and experimentally explore and expand proton-coupled electron transfer (PCET) processes. The models feature H-bonds between the phenol and the nitrogen at the 3-position of the benzimidazole and between the 1 H-benzimidazole proton and the imine nitrogen. Protonation of the benzimidazole and the imine can be unambiguously detected by infrared spectroelectrochemistry (IRSEC) upon oxidation of the phenol. DFT calculations and IRSEC results demonstrate that with sufficiently strong electron-donating groups at the para-position of the N-phenylimine group (e.g., -OCH3 substitution), proton transfer to the imine is exergonic upon phenol oxidation, leading to a one-electron, two-proton (E2PT) product with the imidazole acting as a proton relay. When transfer of the second proton is not sufficiently exergonic (e.g., -CN substitution), a one-electron, one-proton transfer (EPT) product is dominant. Thus, the extent of proton translocation along the H-bond network, either ∼1.6 Å or ∼6.4 Å, can be controlled through imine substitution. Moreover, the H-bond strength between the benzimidazole NH and the imine nitrogen, which is a function of their relative p Ka values, and the redox potential of the phenoxyl radical/phenol couple are linearly correlated with the Hammett constants of the substituents. In all cases, a high potential (∼1 V vs SCE) is observed for the phenoxyl radical/phenol couple. Designing and tuning redox-coupled proton wires is important for understanding bioenergetics and developing novel artificial photosynthetic systems.

6.
Proc Natl Acad Sci U S A ; 112(6): 1681-6, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25583488

RESUMO

Solar fuel generation requires the efficient capture and conversion of visible light. In both natural and artificial systems, molecular sensitizers can be tuned to capture, convert, and transfer visible light energy. We demonstrate that a series of metal-free porphyrins can drive photoelectrochemical water splitting under broadband and red light (λ > 590 nm) illumination in a dye-sensitized TiO2 solar cell. We report the synthesis, spectral, and electrochemical properties of the sensitizers. Despite slow recombination of photoinjected electrons with oxidized porphyrins, photocurrents are low because of low injection yields and slow electron self-exchange between oxidized porphyrins. The free-base porphyrins are stable under conditions of water photoelectrolysis and in some cases photovoltages in excess of 1 V are observed.

7.
Phys Chem Chem Phys ; 19(24): 16151-16158, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28604860

RESUMO

Iridium oxide (IrOx) is one of the best water splitting electrocatalysts, but its active site details are not well known. As with all heterogeneous catalysts, a strategy for counting the number of active sites is not clear, and understanding their nature and structure is remarkably difficult. In this work, we performed a combined study using optical spectroscopy, magnetic resonance and electrochemistry to characterize the interaction of IrOx nanoparticles (NPs) with a probe molecule, catechol. The catalyst is heterogeneous given that the substrate is in a different phase, but behaves as a homogeneous catalyst from the point of view of electrochemistry since it remains in colloidal suspension. We find two types of binding sites: centers A which bind catechol irreversibly making up 21% of the surface, and centers B which bind catechol reversibly making up 79% of the surface. UV-vis absorption spectroscopy shows that the A sites are responsible for the characteristic blue color of the NPs. Electrochemical experiments indicate that the B sites are catalytically active and we give the number of active sites per nanoparticle. We conclude by performing a survey of ligands used in solar cell architectures and show which ones bind well to the surface and which ones inhibit the catalytic activity when doing so, presenting quantitative guidelines for the correct handling of IrOx nanoparticles during their incorporation into multifunctional solar energy harvesting architectures. We suggest ligands binding on the surface oxygen atoms allow for large bound ligand densities with no detrimental effect on the catalytic activity.

8.
J Am Chem Soc ; 138(29): 9251-7, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27379373

RESUMO

The Marcus theory of electron transfer predicts a bell-shaped dependence of the reaction rate on the reaction free energy. The top of the "inverted parabola" corresponds to zero activation barrier when the electron-transfer reorganization energy and the reaction free energy add up to zero. Although this point has traditionally been reached by altering the chemical structures of donors and acceptors, the theory suggests that it can also be reached by varying other parameters of the system including temperature. We find here dramatic evidence of this phenomenon from experiments on a fullerene-porphyrin dyad. Following photoinduced electron transfer, the rate of charge recombination shows a bell-shaped dependence on the inverse temperature, first increasing with cooling and then decreasing at still lower temperatures. This non-Arrhenius rate law is a result of a strong, approximately hyperbolic temperature variation of the reorganization energy and the reaction free energy. Our results provide potentially the cleanest confirmation of the Marcus energy gap law so far since no modification of the chemical structure is involved.

9.
J Am Chem Soc ; 137(1): 245-58, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25514369

RESUMO

A recently reported synthetic method has been employed to prepare several arrays of free base and zinc porphyrins. In the arrays, the porphyrins are arranged around a central benzene ring. The lack of aryl rings in the linkages to the central benzene ring, coupled with the presence of only one meso-aryl substituent on each porphyrin, allows strong electronic interactions between the porphyrin macrocycles. In arrays containing two or six porphyrins, a variety of evidence indicates that the porphyrins exist as twist-stacked dimers reminiscent of the special pairs of bacteriochlorophylls found in some photosynthetic bacteria. These dimers feature van der Waals contact between the macrocycles, and demonstrate excitonic splitting due to π-π interactions. The excitonic effects split and blue-shift the Soret absorptions, and slightly broaden the Q-band absorptions and shift them to longer wavelengths. The interactions also lower the first oxidation potentials by ca. 100 mV, and the arrays show evidence for delocalization of the radical cation over both porphyrins in the dimer. The arrays demonstrate singlet-singlet energy transfer among the chromophores. Arrays of this type will be good models for some aspects of the interactions of photosynthetic pigments, including those of reaction center special pairs and possibly quantum coherence effects. They can also be useful in artificial photosynthetic constructs.


Assuntos
Porfirinas/química , Transferência de Energia , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Porfirinas/síntese química
10.
Faraday Discuss ; 185: 9-35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26515930

RESUMO

Supramolecular photochemical systems consist of photochemically active components such as chromophores, electron donors or electron acceptors that are associated via non-covalent or covalent interactions and that interact in some functional way. Examples of interactions are singlet-singlet energy transfer, triplet-triplet energy transfer, photoinduced electron transfer, quantum coherence and spin-spin magnetic interactions. Supramolecular photochemical "devices" may have applications in areas such as solar energy conversion, molecular logic, computation and data storage, biomedicine, sensing, imaging, and displays. This short review illustrates supramolecular photochemistry with examples drawn from artificial photosynthesis, molecular logic, analog photochemical devices and models for avian magnetic orientation.

11.
Photochem Photobiol Sci ; 14(12): 2147-50, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26516706

RESUMO

Proton-coupled electron transfer (PCET) plays a central role in photosynthesis and potentially in solar-to-fuel systems. We report a spectroscopy study on a phenol-pyrrolidino[60]fullerene. Quenching of the singlet excited state from 1 ns to 250 ps is assigned to PCET. A H/D exchange study reveals a kinetic isotope effect (KIE) of 3.0, consistent with a concerted PCET mechanism.


Assuntos
Fulerenos/química , Fenol/química , Pirrolidinas/química , Transporte de Elétrons , Elétrons , Ligação de Hidrogênio , Isótopos/química , Cinética , Prótons , Espectrofotometria
12.
Phys Chem Chem Phys ; 17(24): 15788-96, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-26017587

RESUMO

A new sensitizer motif for dye sensitized solar cells (DSSC) has been developed. A heteroaromatic moiety containing a pyrazine ring links two porphyrin chromophores to the metal oxide surface via two carboxylic acid attachment groups. A test DSSC sensitized with the new molecule was 3.5 times more efficient than a similar cell sensitized by a single porphyrin model compound. The open circuit photovoltage was increased by a modest factor of 1.3, but the photocurrent increased by a factor of 2.7. Most of the increase is attributed to a reduced rate of charge recombination of the charge separated state formed by photoinduced electron transfer from the excited sensitizer to the TiO2, although some of the difference is due to increased light absorption resulting from more dye on the photoanode. Increased light absorption due to the pyrazine-containing group may also play a role. The design illustrated here could also be used to link complementary sensitizers or antenna moieties in order to increase spectral coverage.

13.
Phys Chem Chem Phys ; 17(5): 3550-9, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25537133

RESUMO

We present a study of a carotenoid-porphyrin-fullerene triad previously shown to function as a chemical compass: the photogenerated carotenoid-fullerene radical pair recombines at a rate sensitive to the orientation of an applied magnetic field. To characterize the system we develop a time-resolved Low-Frequency Reaction Yield Detected Magnetic Resonance (tr-LF-RYDMR) technique; the effect of varying the relative orientation of applied static and 36 MHz oscillating magnetic fields is shown to be strongly dependent on the strength of the oscillating magnetic field. RYDMR is a diagnostic test for involvement of the radical pair mechanism in the magnetic field sensitivity of reaction rates or yields, and has previously been applied in animal behavioural experiments to verify the involvement of radical-pair-based intermediates in the magnetic compass sense of migratory birds. The spectroscopic selection rules governing RYDMR are well understood at microwave frequencies for which the so-called 'high-field approximation' is valid, but at lower frequencies different models are required. For example, the breakdown of the rotating frame approximation has recently been investigated, but less attention has so far been given to orientation effects. Here we gain physical insights into the interplay of the different magnetic interactions affecting low-frequency RYDMR experiments performed in the challenging regime in which static and oscillating applied magnetic fields as well as internal electron-nuclear hyperfine interactions are of comparable magnitude. Our observations aid the interpretation of existing RYDMR-based animal behavioural studies and will inform future applications of the technique to verify and characterize further the biological receptors involved in avian magnetoreception.


Assuntos
Carotenoides/química , Fulerenos/química , Espectroscopia de Ressonância Magnética , Porfirinas/química , Espectroscopia de Ressonância de Spin Eletrônica , Furanos/química , Campos Magnéticos , Termodinâmica
14.
Proc Natl Acad Sci U S A ; 109(39): 15578-83, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22566659

RESUMO

In the photosynthetic photosystem II, electrons are transferred from the manganese-containing oxygen evolving complex (OEC) to the oxidized primary electron-donor chlorophyll P680(•+) by a proton-coupled electron transfer process involving a tyrosine-histidine pair. Proton transfer from the tyrosine phenolic group to a histidine nitrogen positions the redox potential of the tyrosine between those of P680(•+) and the OEC. We report the synthesis and time-resolved spectroscopic study of a molecular triad that models this electron transfer. The triad consists of a high-potential porphyrin bearing two pentafluorophenyl groups (PF(10)), a tetracyanoporphyrin electron acceptor (TCNP), and a benzimidazole-phenol secondary electron-donor (Bi-PhOH). Excitation of PF(10) in benzonitrile is followed by singlet energy transfer to TCNP (τ = 41 ps), whose excited state decays by photoinduced electron transfer (τ = 830 ps) to yield Bi-PhOH-PF(10)(•+)-TCNP(•-). A second electron transfer reaction follows (τ < 12 ps), giving a final state postulated as BiH(+)-PhO(•)-PF(10)-TCNP(•-), in which the phenolic proton now resides on benzimidazole. This final state decays with a time constant of 3.8 µs. The triad thus functionally mimics the electron transfers involving the tyrosine-histidine pair in PSII. The final charge-separated state is thermodynamically capable of water oxidation, and its long lifetime suggests the possibility of coupling systems such as this system to water oxidation catalysts for use in artificial photosynthetic fuel production.


Assuntos
Clorofila/química , Modelos Químicos , Complexo de Proteína do Fotossistema II/química , Prótons , Água/química , Transporte de Elétrons , Oxirredução
15.
Proc Natl Acad Sci U S A ; 109(39): 15612-6, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22547794

RESUMO

Photoelectrochemical water splitting directly converts solar energy to chemical energy stored in hydrogen, a high energy density fuel. Although water splitting using semiconductor photoelectrodes has been studied for more than 40 years, it has only recently been demonstrated using dye-sensitized electrodes. The quantum yield for water splitting in these dye-based systems has, so far, been very low because the charge recombination reaction is faster than the catalytic four-electron oxidation of water to oxygen. We show here that the quantum yield is more than doubled by incorporating an electron transfer mediator that is mimetic of the tyrosine-histidine mediator in Photosystem II. The mediator molecule is covalently bound to the water oxidation catalyst, a colloidal iridium oxide particle, and is coadsorbed onto a porous titanium dioxide electrode with a Ruthenium polypyridyl sensitizer. As in the natural photosynthetic system, this molecule mediates electron transfer between a relatively slow metal oxide catalyst that oxidizes water on the millisecond timescale and a dye molecule that is oxidized in a fast light-induced electron transfer reaction. The presence of the mediator molecule in the system results in photoelectrochemical water splitting with an internal quantum efficiency of approximately 2.3% using blue light.


Assuntos
Materiais Biomiméticos/química , Corantes/química , Complexo de Proteína do Fotossistema II/química , Energia Solar , Água/química , Catálise , Hidrogênio/química , Oxirredução , Oxigênio/química
16.
J Am Chem Soc ; 136(49): 17343-9, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25437708

RESUMO

[Fe-S] clusters, nature's modular electron transfer units, are often arranged in chains that support long-range electron transfer. Despite considerable interest, the design of biomimetic artificial systems emulating multicluster-binding proteins, with the final goal of integrating them in man-made oxidoreductases, remains elusive. Here, we report a novel bis-[4Fe-4S] cluster binding protein, DSD-Fdm, in which the two clusters are positioned within a distance of 12 Å, compatible with the electronic coupling necessary for efficient electron transfer. The design exploits the structural repeat of coiled coils as well as the symmetry of the starting scaffold, a homodimeric helical protein (DSD). In total, eight hydrophobic residues in the core of DSD were replaced by eight cysteine residues that serve as ligands to the [4Fe-4S] clusters. Incorporation of two [4Fe-4S] clusters proceeds with high yield. The two [4Fe-4S] clusters are located in the hydrophobic core of the helical bundle as characterized by various biophysical techniques. The secondary structure of the apo and holo proteins is conserved; further, the incorporation of clusters results in stabilization of the protein with respect to chemical denaturation. Most importantly, this de novo designed protein can mimic the function of natural ferredoxins: we show here that reduced DSD-Fdm transfers electrons to cytochrome c, thus generating the reduced cyt c stoichiometrically.


Assuntos
Ferredoxinas/química , Transporte de Elétrons , Ferredoxinas/síntese química , Modelos Moleculares , Conformação Proteica , Estabilidade Proteica
17.
J Am Chem Soc ; 136(34): 11994-2003, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25072525

RESUMO

Two molecules in which the intensity of shorter-wavelength fluorescence from a strong fluorophore is modulated by longer-wavelength irradiation of an attached merocyanine-spirooxazine reverse photochromic moiety have been synthesized and studied. This unusual fluorescence behavior is the result of quenching of fluorophore fluorescence by the thermally stable, open, zwitterionic form of the spirooxazine, whereas the photogenerated closed, spirocyclic form has no effect on the fluorophore excited state. The population ratio of the closed and open forms of the spirooxazine is controlled by the intensity of the longer-wavelength modulated light. Both square wave and sine wave modulation were investigated. Because the merocyanine-spirooxazine is an unusual reverse photochrome with a thermally stable long-wavelength absorbing form and a short-wavelength absorbing photogenerated isomer with a very short lifetime, this phenomenon does not require irradiation of the molecules with potentially damaging ultraviolet light, and rapid modulation of fluorescence is possible. Molecules demonstrating these properties may be useful in fluorescent probes, as their use can discriminate between probe fluorescence and various types of adventitious "autofluorescence" from other molecules in the system being studied.


Assuntos
Benzopiranos/química , Corantes Fluorescentes/síntese química , Indóis/química , Luz , Oxazinas/química , Compostos de Espiro/química , Absorção de Radiação , Técnicas Eletroquímicas , Corantes Fluorescentes/química , Modelos Químicos , Estrutura Molecular , Processos Fotoquímicos
18.
Photosynth Res ; 120(1-2): 59-70, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23397434

RESUMO

Capturing and converting solar energy via artificial photosynthesis offers an ideal way to limit society's dependence on fossil fuel and its myriad consequences. The development and study of molecular artificial photosynthetic reactions centers and antenna complexes and the combination of these constructs with catalysts to drive the photochemical production of a fuel helps to build the understanding needed for development of future scalable technologies. This review focuses on the study of molecular complexes, design of which is inspired by the components of natural photosynthesis, and covers research from early triad reaction centers developed by the group of Gust, Moore, and Moore to recent photoelectrochemical systems capable of using light to convert water to oxygen and hydrogen.


Assuntos
Fotossíntese/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Energia Solar , Hidrogênio/metabolismo , Luz Solar , Água/metabolismo
19.
Phys Chem Chem Phys ; 16(33): 17569-79, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25025204

RESUMO

A semiconducting porphyrin polymer that is solution processable and soluble in organic solvents has been synthesized, and its spectroscopic and electrochemical properties have been investigated. The polymer consists of diarylporphyrin units that are linked at meso-positions by aminophenyl groups, thus making the porphyrin rings an integral part of the polymer backbone. Hexyl chains on two of the aryl groups impart solubility. The porphyrin units interact only weakly in the ground electronic state. Excitation produces a local excited state that rapidly evolves into a state with charge-transfer character (CT) involving the amino nitrogen and the porphyrin macrocycle. Singlet excitation energy is transferred between porphyrin units in the chain with a time constant of ca. 210 ps. The final CT state has a lifetime of several nanoseconds, and the first oxidation of the polymer occurs at ca. 0.58 V vs. SCE. These properties make the polymer a suitable potential excited state electron donor to a variety of fullerenes or other acceptor species, suggesting that the polymer may find use in organic photovoltaics, sensors, and similar applications.


Assuntos
Polímeros/síntese química , Porfirinas/síntese química , Semicondutores , Condutividade Elétrica , Teste de Materiais
20.
J Phys Chem A ; 118(45): 10631-8, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25109403

RESUMO

Titanium dioxide (TiO2) is widely used for photocatalysis and solar cell applications, and the electronic structure of bulk TiO2 is well understood. However, the surface structure of nanoparticulate TiO2, which has a key role in properties such as solubility and catalytic activity, still remains controversial. Detailed understanding of surface defect structures may help explain reactivity and overall materials performance in a wide range of applications. In this work we address the solubility problem and surface defects control on TiO2 nanoparticles. We report the synthesis and characterization of ∼4 nm TiO2 anatase spherical nanoparticles that are soluble and stable in a wide range of organic solvents and water. By controlling the temperature during the synthesis, we are able to tailor the density of defect states on the surface of the TiO2 nanoparticles without affecting parameters such as size, shape, core crystallinity, and solubility. The morphology of both kinds of nanoparticles was determined by TEM. EPR experiments were used to characterize the surface defects, and transient absorption measurements demonstrate the influence of the TiO2 defect states on photoinduced electron transfer dynamics.


Assuntos
Nanopartículas Metálicas/química , Titânio/química , Acetonitrilas/química , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Transferência de Energia , Microscopia Eletrônica de Transmissão , Processos Fotoquímicos , Solubilidade , Propriedades de Superfície , Temperatura , Água/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa