Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 38(11): 4832-4846, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34240169

RESUMO

The dispersal of rice (Oryza sativa) following domestication influenced massive social and cultural changes across South, East, and Southeast (SE) Asia. The history of dispersal across islands of SE Asia, and the role of Taiwan and the Austronesian expansion in this process remain largely unresolved. Here, we reconstructed the routes of dispersal of O. sativa ssp. japonica rice to Taiwan and the northern Philippines using whole-genome resequencing of indigenous rice landraces coupled with archaeological and paleoclimate data. Our results indicate that japonica rice found in the northern Philippines diverged from Indonesian landraces as early as 3,500 years before present (BP). In contrast, rice cultivated by the indigenous peoples of the Taiwanese mountains has complex origins. It comprises two distinct populations, each best explained as a result of admixture between temperate japonica that presumably came from northeast Asia, and tropical japonica from the northern Philippines and mainland SE Asia, respectively. We find that the temperate japonica component of these indigenous Taiwan populations diverged from northeast Asia subpopulations at about 2,600 BP, whereas gene flow from the northern Philippines had begun before ∼1,300 BP. This coincides with a period of intensified trade established across the South China Sea. Finally, we find evidence for positive selection acting on distinct genomic regions in different rice subpopulations, indicating local adaptation associated with the spread of japonica rice.


Assuntos
Oryza , Sudeste Asiático , Domesticação , Fluxo Gênico , Oryza/genética , Taiwan
2.
Mol Biol Evol ; 38(10): 4475-4492, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34191029

RESUMO

The date palm, Phoenix dactylifera, has been a cornerstone of Middle Eastern and North African agriculture for millennia. It was first domesticated in the Persian Gulf, and its evolution appears to have been influenced by gene flow from two wild relatives, P. theophrasti, currently restricted to Crete and Turkey, and P. sylvestris, widespread from Bangladesh to the West Himalayas. Genomes of ancient date palm seeds show that gene flow from P. theophrasti to P. dactylifera may have occurred by ∼2,200 years ago, but traces of P. sylvestris could not be detected. We here integrate archeogenomics of a ∼2,100-year-old P. dactylifera leaf from Saqqara (Egypt), molecular-clock dating, and coalescence approaches with population genomic tests, to probe the hybridization between the date palm and its two closest relatives and provide minimum and maximum timestamps for its reticulated evolution. The Saqqara date palm shares a close genetic affinity with North African date palm populations, and we find clear genomic admixture from both P. theophrasti, and P. sylvestris, indicating that both had contributed to the date palm genome by 2,100 years ago. Molecular-clocks placed the divergence of P. theophrasti from P. dactylifera/P. sylvestris and that of P. dactylifera from P. sylvestris in the Upper Miocene, but strongly supported, conflicting topologies point to older gene flow between P. theophrasti and P. dactylifera, and P. sylvestris and P. dactylifera. Our work highlights the ancient hybrid origin of the date palms, and prompts the investigation of the functional significance of genetic material introgressed from both close relatives, which in turn could prove useful for modern date palm breeding.


Assuntos
Phoeniceae , Domesticação , Egito , Phoeniceae/genética , Melhoramento Vegetal , Folhas de Planta/genética
3.
PLoS Genet ; 14(9): e1007628, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30235212

RESUMO

Plants defend themselves against pathogens by activating an array of immune responses. Unfortunately, immunity programs may also cause unintended collateral damage to the plant itself. The quantitative disease resistance gene ACCELERATED CELL DEATH 6 (ACD6) serves to balance growth and pathogen resistance in natural populations of Arabidopsis thaliana. An autoimmune allele, ACD6-Est, which strongly reduces growth under specific laboratory conditions, is found in over 10% of wild strains. There is, however, extensive variation in the strength of the autoimmune phenotype expressed by strains with an ACD6-Est allele, indicative of genetic modifiers. Quantitative genetic analysis suggests that ACD6 activity can be modulated in diverse ways, with different strains often carrying different large-effect modifiers. One modifier is SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), located in a highly polymorphic cluster of nucleotide-binding domain and leucine-rich repeat (NLR) immune receptor genes, which are prototypes for qualitative disease resistance genes. Allelic variation at SNC1 correlates with ACD6-Est activity in multiple accessions, and a common structural variant affecting the NL linker sequence can explain differences in SNC1 activity. Taken together, we find that an NLR gene can mask the activity of an ACD6 autoimmune allele in natural A. thaliana populations, thereby linking different arms of the plant immune system.


Assuntos
Anquirinas/imunologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Arabidopsis/imunologia , Autoimunidade/genética , Regulação da Expressão Gênica de Plantas/imunologia , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Alelos , Anquirinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resistência à Doença/genética , Mutação , Doenças das Plantas/genética , Plantas Geneticamente Modificadas , Transdução de Sinais/imunologia
4.
Proc Natl Acad Sci U S A ; 114(20): 5213-5218, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28473417

RESUMO

Over the past 20 y, many studies have examined the history of the plant ecological and molecular model, Arabidopsis thaliana, in Europe and North America. Although these studies informed us about the recent history of the species, the early history has remained elusive. In a large-scale genomic analysis of African A. thaliana, we sequenced the genomes of 78 modern and herbarium samples from Africa and analyzed these together with over 1,000 previously sequenced Eurasian samples. In striking contrast to expectations, we find that all African individuals sampled are native to this continent, including those from sub-Saharan Africa. Moreover, we show that Africa harbors the greatest variation and represents the deepest history in the A. thaliana lineage. Our results also reveal evidence that selfing, a major defining characteristic of the species, evolved in a single geographic region, best represented today within Africa. Demographic inference supports a model in which the ancestral A. thaliana population began to split by 120-90 kya, during the last interglacial and Abbassia pluvial, and Eurasian populations subsequently separated from one another at around 40 kya. This bears striking similarities to the patterns observed for diverse species, including humans, implying a key role for climatic events during interglacial and pluvial periods in shaping the histories and current distributions of a wide range of species.


Assuntos
Arabidopsis/genética , Genômica/métodos , África , África Subsaariana , Sequência de Bases , Evolução Biológica , Europa (Continente) , Evolução Molecular , Variação Genética/genética , Genética Populacional/métodos , Genoma de Planta/genética , Haplótipos/genética , Filogenia , Análise de Componente Principal
5.
J Hum Evol ; 79: 150-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25577019

RESUMO

The colonization of the human environment by plants, and the consequent evolution of domesticated forms is increasingly being viewed as a co-evolutionary plant-human process that occurred over a long time period, with evidence for the co-evolutionary relationship between plants and humans reaching ever deeper into the hominin past. This developing view is characterized by a change in emphasis on the drivers of evolution in the case of plants. Rather than individual species being passive recipients of artificial selection pressures and ultimately becoming domesticates, entire plant communities adapted to the human environment. This evolutionary scenario leads to systems level genetic expectations from models that can be explored through ancient DNA and Next Generation Sequencing approaches. Emerging evidence suggests that domesticated genomes fit well with these expectations, with periods of stable complex evolution characterized by large amounts of change associated with relatively small selective value, punctuated by periods in which changes in one-half of the plant-hominin relationship cause rapid, low-complexity adaptation in the other. A corollary of a single plant-hominin co-evolutionary process is that clues about the initiation of the domestication process may well lie deep within the hominin lineage.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Genoma de Planta/genética , Genômica/métodos , Fenômenos Fisiológicos Vegetais/genética , Plantas/genética , Agricultura , Animais , Arqueologia , DNA de Plantas/genética , Hominidae , Humanos
6.
Science ; 382(6666): 59-63, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37797028

RESUMO

Herbaria are undergoing a renaissance as valuable sources of genomic data for exploring plant evolution, ecology, and diversity. Ancient DNA retrieved from herbarium specimens can provide unprecedented glimpses into past plant communities, their interactions with biotic and abiotic factors, and the genetic changes that have occurred over time. Here, we highlight recent advances in the field of herbarium genomics and discuss the challenges and opportunities of combining data from modern and time-stamped historical specimens. We also describe how integrating herbarium genomics data with other data types can yield substantial insights into the evolutionary and ecological processes that shape plant communities. Herbarium genomic analysis is a tool for understanding plant life and informing conservation efforts in the face of dire environmental challenges.


Assuntos
Coleções como Assunto , DNA Antigo , Plantas , Genômica , Plantas/genética , Conservação dos Recursos Naturais , Evolução Biológica , Adaptação Biológica/genética , Fenótipo
7.
Annu Rev Plant Biol ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012052

RESUMO

Crops are plant species that were domesticated starting about 11,000 years ago from several centers of origin, most prominently the Fertile Crescent, East Asia, and Mesoamerica. From their domestication centers, these crops spread across the globe and had to adapt to differing environments as a result of this dispersal. We discuss broad patterns of crop spread, including the early diffusion of crops associated with the rise and spread of agriculture, the later movement via ancient trading networks, and the exchange between the Old and New Worlds over the last ∼550 years after the European colonization of the Americas. We also examine the various genetic mechanisms associated with the evolutionary adaptation of crops to their new environments after dispersal, most prominently seasonal adaptation associated with movement across latitudes, as well as altitudinal, temperature, and other environmental factors. Expected final online publication date for the Annual Review of Plant Biology, Volume 75 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

8.
Curr Opin Plant Biol ; 66: 102169, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35065528

RESUMO

We can increase the stability of our food systems against environmental variability and climate change by following the footsteps of our ancestors and domesticating edible wild plants. Reinforced by recent advances in comparative genomics and gene editing technologies, neodomestication opens possibilities for a rapid generation of new crops. By starting the candidate selection pipeline with climatic parameters, we orient neodomestication efforts to increase food security against climate change. We highlight the fact that the edible species conservation and characterization will be key in this process. Utilization of genetic resources, entrusted to conservationists and researchers by local communities, has to be conducted with highest ethical standards and benefit-sharing in mind.


Assuntos
Mudança Climática , Produtos Agrícolas , Agricultura , Produtos Agrícolas/genética , Edição de Genes , Genômica
9.
Curr Protoc Plant Biol ; 5(4): e20121, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33211414

RESUMO

The ability to sequence DNA retrieved from ancient and historical material plays a crucial role in reinforcing evolutionary and anthropological inference. While the focus of the field is largely on analyzing DNA from ancient hominids and other animals, we have also learned from plant ancient DNA (aDNA), in particular, about human farming practices, crop domestication, environment management, species invasion, and adaptation to various environmental conditions. In the following protocols, we outline best practices for plant aDNA isolation, preparation for sequencing, bioinformatic processing, and authentication. We describe the process all the way from processing of archaeological or historical plant material to characterizing and authenticating sequencing reads. In alternative protocols, we include modifications to this process that are tailored to strongly degraded DNA. Throughout, we stress the importance of precautionary measures to successfully analyze aDNA. Finally, we discuss the evolution of the archaeogenomics field and the development of new methods, which both shaped this protocol. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Isolation of aDNA Alternate Protocol 1: Isolation of ultra-short DNA (Dabney modification) Support Protocol 1: Preparation of PTB-based mix Support Protocol 2: Preparation of binding buffer Basic Protocol 2: Preparation of genomic libraries Alternate Protocol 2: Preparation of genomic libraries with uracil removal Basic Protocol 3: Bioinformatic processing and authentication of aDNA.


Assuntos
DNA Antigo , Animais , Biologia Computacional , DNA de Plantas/genética , Biblioteca Gênica , Humanos , Análise de Sequência de DNA
10.
Nat Plants ; 6(5): 492-502, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32415291

RESUMO

Rice (Oryza sativa) is one of the world's most important food crops, and is comprised largely of japonica and indica subspecies. Here, we reconstruct the history of rice dispersal in Asia using whole-genome sequences of more than 1,400 landraces, coupled with geographic, environmental, archaeobotanical and paleoclimate data. Originating around 9,000 yr ago in the Yangtze Valley, rice diversified into temperate and tropical japonica rice during a global cooling event about 4,200 yr ago. Soon after, tropical japonica rice reached Southeast Asia, where it rapidly diversified, starting about 2,500 yr BP. The history of indica rice dispersal appears more complicated, moving into China around 2,000 yr BP. We also identify extrinsic factors that influence genome diversity, with temperature being a leading abiotic factor. Reconstructing the dispersal history of rice and its climatic correlates may help identify genetic adaptations associated with the spread of a key domesticated species.


Assuntos
Oryza/genética , Ásia , Evolução Biológica , Clima , Domesticação , Ecologia , Variação Genética/genética , Sequenciamento Completo do Genoma
11.
Sci Rep ; 9(1): 976, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30700760

RESUMO

After domestication in the Near East around 10,000 years ago several founder crops, flax included, spread to European latitudes. On reaching northerly latitudes the architecture of domesticated flax became more suitable to fiber production over oil, with longer stems, smaller seeds and fewer axillary branches. Latitudinal adaptations in crops typically result in changes in flowering time, often involving the PEBP family of genes that also have the potential to influence plant architecture. Two PEBP family genes in the flax genome, LuTFL1 and LuTFL2, vary in wild and cultivated flax over latitudinal range with cultivated flax receiving LuTFL1 alleles from northerly wild flax populations. Compared to a background of population structure of flaxes over latitude, the LuTFL1 alleles display a level of differentiation that is consistent with selection for an allele III in the north. We demonstrate through heterologous expression in Arabidopsis thaliana that LuTFL1 is a functional homolog of TFL1 in A. thaliana capable of changing both flowering time and plant architecture. We conclude that specialized fiber flax types could have formed as a consequence of a natural adaptation of cultivated flax to higher latitudes.

12.
Nat Ecol Evol ; 3(7): 1093-1101, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31235927

RESUMO

Potato, one of the most important staple crops, originates from the highlands of the equatorial Andes. There, potatoes propagate vegetatively via tubers under short days, constant throughout the year. After their introduction to Europe in the sixteenth century, potatoes adapted to a shorter growing season and to tuber formation under long days. Here, we traced the demographic and adaptive history of potato introduction to Europe. To this end, we sequenced 88 individuals that comprise landraces, modern cultivars and historical herbarium samples, including specimens collected by Darwin during the voyage of the Beagle. Our findings show that European potatoes collected during the period 1650-1750 were closely related to Andean landraces. After their introduction to Europe, potatoes admixed with Chilean genotypes. We identified candidate genes putatively involved in long-day pre-adaptation, and showed that the 1650-1750 European individuals were not long-day adapted through previously described allelic variants of the CYCLING DOF FACTOR1 gene. Such allelic variants were detected in Europe during the nineteenth century. Our study highlights the power of combining contemporary and historical genomes to understand the complex evolutionary history of crop adaptation to new environments.


Assuntos
Solanum tuberosum , Aclimatação , Animais , Cães , Europa (Continente) , Genótipo , Tubérculos
13.
Curr Opin Plant Biol ; 36: 38-45, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28160617

RESUMO

Improved understanding of ancient DNA (aDNA) biochemical properties coupled with application of next generation sequencing (NGS) methods enabled sequencing and authenticating genomes of historical samples. This advancement ignited a revolution in plant evolutionary genomics by allowing direct observations of past molecular diversity. Analyses of genomes sequenced from temporally distributed samples of Gossypium sp., Phytophthora infestans and Arabidopsis thaliana improved our understanding of the evolutionary rates and time scales at which genome remodeling takes place. Comparison of historical samples of barley (Hordeum vulgare) and maize (Zea mays ssp. mays) with their present-day counterparts enabled assessment of selection during different stages of domestication. These examples show how aDNA already improved our evolutionary inferences. Increasing quality and amount of sequencing data retrieved from historical plants will further advance our understanding of plant evolution.


Assuntos
DNA Antigo , Evolução Molecular , Genoma de Planta , Genômica , Análise de Sequência de DNA
14.
Biotechniques ; 62(2): 76-79, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28193151

RESUMO

DNA extracted from herbarium specimens is highly fragmented; therefore, it is crucial to use extraction protocols that retrieve short DNA molecules. Improvements in extraction and DNA library preparation protocols for animal remains have allowed efficient retrieval of molecules shorter than 50 bp. Here, we applied these improvements to DNA extraction protocols for herbarium specimens and evaluated extraction performance by shotgun sequencing, which allows an accurate estimation of the distribution of DNA fragment lengths. Extraction with N-phenacylthiazolium bromide (PTB) buffer decreased median fragment length by 35% when compared with cetyl-trimethyl ammonium bromide (CTAB); modifying the binding conditions of DNA to silica allowed for an additional decrease of 10%. We did not observe a further decrease in length for single-stranded DNA (ssDNA) versus double-stranded DNA (dsDNA) library preparation methods. Our protocol enables the retrieval of ultrashort molecules from herbarium specimens, which will help to unlock the genetic information stored in herbaria.


Assuntos
DNA de Plantas/química , DNA de Plantas/isolamento & purificação , Análise de Sequência de DNA/métodos , Cetrimônio , Compostos de Cetrimônio , DNA Antigo/química , DNA Antigo/isolamento & purificação , DNA de Plantas/genética , Biblioteca Gênica , Reação em Cadeia da Polimerase , Tiazóis
15.
Science ; 357(6350): 512-515, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28774930

RESUMO

By 4000 years ago, people had introduced maize to the southwestern United States; full agriculture was established quickly in the lowland deserts but delayed in the temperate highlands for 2000 years. We test if the earliest upland maize was adapted for early flowering, a characteristic of modern temperate maize. We sequenced fifteen 1900-year-old maize cobs from Turkey Pen Shelter in the temperate Southwest. Indirectly validated genomic models predicted that Turkey Pen maize was marginally adapted with respect to flowering, as well as short, tillering, and segregating for yellow kernel color. Temperate adaptation drove modern population differentiation and was selected in situ from ancient standing variation. Validated prediction of polygenic traits improves our understanding of ancient phenotypes and the dynamics of environmental adaptation.


Assuntos
Aclimatação/genética , Zea mays/genética , Zea mays/fisiologia , Temperatura Baixa , Flores/genética , Flores/fisiologia , Genoma de Planta , Genômica , Herança Multifatorial , América do Norte , Fenótipo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa