Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Int J Legal Med ; 138(4): 1233-1244, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38369682

RESUMO

The use of genetic markers, specifically Short Tandem Repeats (STRs), has been a valuable tool for identifying persons of interest. However, the ability to analyze additional markers including Single Nucleotide Polymorphisms (SNPs) and Insertion/Deletion (INDELs) polymorphisms allows laboratories to explore other investigative leads. INDELs were chosen in this study because large panels can be differentiated by size, allowing them to be genotyped by capillary electrophoresis. Moreover, these markers do not produce stutter and are smaller in size than STRs, facilitating the recovery of genetic information from degraded samples. The INDEL Ancestry Informative Markers (AIMs) in this study were selected from the 1000 Genomes Project based on a fixation index (FST) greater than 0.50, high allele frequency divergence, and genetic distance. A total of 25 INDEL-AIMs were optimized and validated according to SWGDAM guidelines in a five-dye multiplex. To validate the panel, genotyping was performed on 155 unrelated individuals from four ancestral groups (Caucasian, African, Hispanic, and East Asian). Bayesian clustering and principal component analysis (PCA) were performed revealing clear separation among three groups, with some observed overlap within the Hispanic group. Additionally, the PCA results were compared against a training set of 793 samples from the 1000 Genomes Project, demonstrating consistent results. Validation studies showed the assay to be reproducible, tolerant to common inhibitors, robust with challenging casework type samples, and sensitive down to 125 pg. In conclusion, our results demonstrated the robustness and effectiveness of a 25 loci INDEL system for ancestry inference of four ancestries commonly found in the United States.


Assuntos
Eletroforese Capilar , Mutação INDEL , Análise de Componente Principal , Grupos Raciais , Humanos , Grupos Raciais/genética , Marcadores Genéticos , Genótipo , Frequência do Gene , Teorema de Bayes , Genética Populacional , Impressões Digitais de DNA/métodos , Repetições de Microssatélites
2.
Plant J ; 89(3): 617-635, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27754575

RESUMO

Spirodela polyrhiza is a fast-growing aquatic monocot with highly reduced morphology, genome size and number of protein-coding genes. Considering these biological features of Spirodela and its basal position in the monocot lineage, understanding its genome architecture could shed light on plant adaptation and genome evolution. Like many draft genomes, however, the 158-Mb Spirodela genome sequence has not been resolved to chromosomes, and important genome characteristics have not been defined. Here we deployed rapid genome-wide physical maps combined with high-coverage short-read sequencing to resolve the 20 chromosomes of Spirodela and to empirically delineate its genome features. Our data revealed a dramatic reduction in the number of the rDNA repeat units in Spirodela to fewer than 100, which is even fewer than that reported for yeast. Consistent with its unique phylogenetic position, small RNA sequencing revealed 29 Spirodela-specific microRNA, with only two being shared with Elaeis guineensis (oil palm) and Musa balbisiana (banana). Combining DNA methylation data and small RNA sequencing enabled the accurate prediction of 20.5% long terminal repeats (LTRs) that doubled the previous estimate, and revealed a high Solo:Intact LTR ratio of 8.2. Interestingly, we found that Spirodela has the lowest global DNA methylation levels (9%) of any plant species tested. Taken together our results reveal a genome that has undergone reduction, likely through eliminating non-essential protein coding genes, rDNA and LTRs. In addition to delineating the genome features of this unique plant, the methodologies described and large-scale genome resources from this work will enable future evolutionary and functional studies of this basal monocot family.


Assuntos
Araceae/genética , Mapeamento Cromossômico/métodos , Genoma de Planta/genética , Análise de Sequência de DNA/métodos , Cromossomos de Plantas/genética , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas/genética , Variação Genética , Proteínas de Plantas/genética
3.
Proc Natl Acad Sci U S A ; 109(11): 4098-103, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22375033

RESUMO

The mechanisms underlying the biosynthesis of cellulose in plants are complex and still poorly understood. A central question concerns the mechanism of microfibril structure and how this is linked to the catalytic polymerization action of cellulose synthase (CESA). Furthermore, it remains unclear whether modification of cellulose microfibril structure can be achieved genetically, which could be transformative in a bio-based economy. To explore these processes in planta, we developed a chemical genetic toolbox of pharmacological inhibitors and corresponding resistance-conferring point mutations in the C-terminal transmembrane domain region of CESA1(A903V) and CESA3(T942I) in Arabidopsis thaliana. Using (13)C solid-state nuclear magnetic resonance spectroscopy and X-ray diffraction, we show that the cellulose microfibrils displayed reduced width and an additional cellulose C4 peak indicative of a degree of crystallinity that is intermediate between the surface and interior glucans of wild type, suggesting a difference in glucan chain association during microfibril formation. Consistent with measurements of lower microfibril crystallinity, cellulose extracts from mutated CESA1(A903V) and CESA3(T942I) displayed greater saccharification efficiency than wild type. Using live-cell imaging to track fluorescently labeled CESA, we found that these mutants show increased CESA velocities in the plasma membrane, an indication of increased polymerization rate. Collectively, these data suggest that CESA1(A903V) and CESA3(T942I) have modified microfibril structure in terms of crystallinity and suggest that in plants, as in bacteria, crystallization biophysically limits polymerization.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Celulose/química , Glucosiltransferases/química , Glucosiltransferases/genética , Microfibrilas/química , Mutação/genética , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Celulose/biossíntese , Cristalização , Resistência a Medicamentos/efeitos dos fármacos , Genes Dominantes/genética , Glucosiltransferases/metabolismo , Espectroscopia de Ressonância Magnética , Microfibrilas/efeitos dos fármacos , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Transporte Proteico/efeitos dos fármacos , Quinolinas/química , Quinolinas/farmacologia , Relação Estrutura-Atividade
4.
Plant Physiol ; 162(2): 675-88, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23606596

RESUMO

The actin and microtubule cytoskeletons regulate cell shape across phyla, from bacteria to metazoans. In organisms with cell walls, the wall acts as a primary constraint of shape, and generation of specific cell shape depends on cytoskeletal organization for wall deposition and/or cell expansion. In higher plants, cortical microtubules help to organize cell wall construction by positioning the delivery of cellulose synthase (CesA) complexes and guiding their trajectories to orient newly synthesized cellulose microfibrils. The actin cytoskeleton is required for normal distribution of CesAs to the plasma membrane, but more specific roles for actin in cell wall assembly and organization remain largely elusive. We show that the actin cytoskeleton functions to regulate the CesA delivery rate to, and lifetime of CesAs at, the plasma membrane, which affects cellulose production. Furthermore, quantitative image analyses revealed that actin organization affects CesA tracking behavior at the plasma membrane and that small CesA compartments were associated with the actin cytoskeleton. By contrast, localized insertion of CesAs adjacent to cortical microtubules was not affected by the actin organization. Hence, both actin and microtubule cytoskeletons play important roles in regulating CesA trafficking, cellulose deposition, and organization of cell wall biogenesis.


Assuntos
Actinas/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Glucosiltransferases/metabolismo , Interfase , Citoesqueleto de Actina/metabolismo , Actinas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Parede Celular/metabolismo , Celulose/metabolismo , Citoesqueleto/metabolismo , Exocitose , Glucosiltransferases/genética , Complexo de Golgi , Hipocótilo/citologia , Hipocótilo/metabolismo , Microtúbulos/metabolismo , Dados de Sequência Molecular , Mutação
5.
Plant Cell ; 23(6): 2302-13, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21693695

RESUMO

In eukaryotic cells, the actin and microtubule (MT) cytoskeletal networks are dynamic structures that organize intracellular processes and facilitate their rapid reorganization. In plant cells, actin filaments (AFs) and MTs are essential for cell growth and morphogenesis. However, dynamic interactions between these two essential components in live cells have not been explored. Here, we use spinning-disc confocal microscopy to dissect interaction and cooperation between cortical AFs and MTs in Arabidopsis thaliana, utilizing fluorescent reporter constructs for both components. Quantitative analyses revealed altered AF dynamics associated with the positions and orientations of cortical MTs. Reorganization and reassembly of the AF array was dependent on the MTs following drug-induced depolymerization, whereby short AFs initially appeared colocalized with MTs, and displayed motility along MTs. We also observed that light-induced reorganization of MTs occurred in concert with changes in AF behavior. Our results indicate dynamic interaction between the cortical actin and MT cytoskeletons in interphase plant cells.


Assuntos
Citoesqueleto de Actina/metabolismo , Arabidopsis/citologia , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Microtúbulos/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Antineoplásicos/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Citoesqueleto/efeitos dos fármacos , Depsipeptídeos/farmacologia , Microtúbulos/ultraestrutura , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Células Vegetais/ultraestrutura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/ultraestrutura , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/ultraestrutura , Tiazolidinas/farmacologia
6.
J Forensic Sci ; 69(3): 814-824, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38291825

RESUMO

DNA analysis of forensic case samples relies on short tandem repeats (STRs), a key component of the combined DNA index system (CODIS) used to identify individuals. However, limitations arise when dealing with challenging samples, prompting the exploration of alternative markers such as single nucleotide polymorphisms (SNPs) and insertion/deletion (INDELs) polymorphisms. Unlike SNPs, INDELs can be differentiated easily by size, making them compatible with electrophoresis methods. It is possible to design small INDEL amplicons (<200 bp) to enhance recovery from degraded samples. To this end, a set of INDEL Human Identification Markers (HID) was curated from the 1000 Genomes Project, employing criteria including a fixation index (FST) ≤ 0.06, minor allele frequency (MAF) >0.2, and high allele frequency divergence. A panel of 33 INDEL-HIDs was optimized and validated following the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines, utilizing a five-dye multiplex electrophoresis system. A small sample set (n = 79 unrelated individuals) was genotyped to assess the assay's performance. The validation studies exhibited reproducibility, inhibition tolerance, ability to detect a two-person mixture from a 4:1 to 1:6 ratio, robustness with challenging samples, and sensitivity down to 125 pg of DNA. In summary, the 33-loci INDEL-HID panel exhibited robust recovery with low-template and degraded samples and proved effective for individualization within a small sample set.


Assuntos
Impressões Digitais de DNA , Frequência do Gene , Mutação INDEL , Humanos , Impressões Digitais de DNA/métodos , Reprodutibilidade dos Testes , Marcadores Genéticos , Genótipo , Corantes Fluorescentes , Reação em Cadeia da Polimerase , Polimorfismo Genético , Eletroforese Capilar , Repetições de Microssatélites
7.
Plant J ; 72(6): 960-71, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23061883

RESUMO

Ribonuclease R (RNR1) and polynucleotide phosphorylase (cpPNPase) are the two known 3'→5' exoribonucleases in Arabidopsis chloroplasts, and are involved in several aspects of rRNA and mRNA metabolism. In this work, we show that mutants lacking both RNR1 and cpPNPase exhibit embryo lethality, akin to the non-viability of the analogous double mutant in Escherichia coli. We were successful, however, in combining an rnr1 null mutation with weak pnp mutant alleles, and show that the resulting chlorotic plants display a global reduction in RNA abundance. Such a counterintuitive outcome following the loss of RNA degradation activity suggests a major importance of RNA maturation as a determinant of RNA stability. Detailed analysis of the double mutant demonstrates that the enzymes catalyze a two-step maturation of mRNA 3' ends, with RNR1 polishing 3' termini created by cpPNPase. The bulky quaternary structure of cpPNPase compared with RNR1 could explain this activity split between the two enzymes. In contrast to the double mutants, the rnr1 single mutant overaccumulates most mRNA species when compared with the wild type. The excess mRNAs in rnr1 are often present in non-polysomal fractions, and half-life measurements demonstrate a substantial increase in the stability of most mRNA species tested. Together, our data reveal the cooperative activity of two 3'→5' exoribonucleases in chloroplast mRNA 3' end maturation, and support the hypothesis that RNR1 plays a significant role in the destabilization of mRNAs unprotected by ribosomes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Exorribonucleases/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Estabilidade de RNA/genética , Ribonucleotídeo Redutases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Exorribonucleases/genética , Meia-Vida , Homeostase , Polirribonucleotídeo Nucleotidiltransferase/genética , RNA de Cloroplastos/genética , RNA Mensageiro/genética , RNA Ribossômico/metabolismo , Ribonucleotídeo Redutases/genética
8.
Sci Justice ; 62(5): 547-555, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36336448

RESUMO

Recognizing and interpreting mixtures are challenges that occur frequently in forensic casework. Therefore, any new analysis methods that are implemented must handle the challenges of mixed forensic samples. Next generation sequencing offers advantages over capillary electrophoresis in amplicon multiplexing and degraded sample analysis; however, advantages with mixed samples rely heavily on the advancement of user-friendly analysis software. This research analyzed samples with the ForenSeq™ DNA Signature Prep Kit on the MiSeq FGx® and compared them with the GlobalFiler™ STR Kit for capillary electrophoresis. Metrics tested for both chemistries included concordance, limits of detection, and mixture analysis. Data analysis for mixture samples was completed with the MixtureAce™ plug-in and ArmedXpert™ software. Next generation sequencing offered distinct advantages in limits of detection and isoallele heterozygosity but suffered from increased variability in stutter and allele count ratios compared to capillary electrophoresis.


Assuntos
Impressões Digitais de DNA , Repetições de Microssatélites , Humanos , Impressões Digitais de DNA/métodos , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Análise de Sequência de DNA , DNA
9.
J Cannabis Res ; 4(1): 13, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35300721

RESUMO

BACKGROUND: Marijuana (Cannabis sativa) is the most commonly used illicit drug in the USA, and the use of DNA barcodes could assist drug trafficking investigations by indicating the biogeographical origin and crop type of a sample and providing a means for linking cases. Additionally, the legality of marijuana in the USA remains complicated with some states fully legalizing marijuana for recreational use while federally marijuana remains completely illegal. Massively parallel sequencing (MPS) offers distinct advantages over capillary electrophoresis (CE), including more comprehensive coverage of target loci, analysis of hundreds of markers simultaneously, and high throughput capabilities. METHODS: This study reports on the development of a MiSeq FGx® assay targeting seven "hotspot" regions in the Cannabis sativa chloroplast genome that are highly polymorphic and informative in attempts to determine biogeographical origin and distinguishing between marijuana and hemp. Sequencing results were compared to previous studies that used CE-based genotyping methods. RESULTS: A total of 49 polymorphisms were observed, 16 of which have not been previously reported. Additionally, sequence data revealed isoalleles at one locus, which were able to differentiate two samples that had the same haplotype using CE-based methods. This study reports preliminary results from sequencing 14 hemp and marijuana samples from different countries using the developed MPS assay. CONCLUSION: Future studies should genotype a more comprehensive sample set from around the world to build a haplotype database, which could be used to provide investigative leads for law enforcement agencies investigating marijuana trafficking.

10.
Forensic Sci Int Genet ; 59: 102721, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35576791

RESUMO

The ForenSeq® mtDNA Control Region Kit, MiSeq FGx®, and Universal Analysis Software (UAS) were assessed to better define the performance and limitations of the system with forensically relevant samples to provide data for its transition into practice. A total of six MiSeq FGx sequencing runs of ForenSeq mtDNA Control Region kit, three runs of additional orthogonal sequencing chemistries, and Sanger sequencing results for 14 samples were used to test for concordance. Sensitivity, reproducibility, mixture detection studies, as well as studies to measure the performance of amplification and sequencing controls were performed. The use and reliability of the UAS for data analysis was also examined. With a variety of sample types and controls representing many mitochondrial haplotypes, the recently developed mtDNA Control Region Kit, with the MiSeq FGx and UAS, was found to be fit for purpose as reliable, reproducible, and robust. Sensitivity down to 1 pg of input genomic DNA was demonstrated, which allows the system to offer low limits of detection for better interrogation of potential heteroplasmy in samples. Concerns for implementing next generation sequencing (NGS) for mtDNA in laboratories were addressed in this research, including initial template quantification and confirmation of haplotypes generated by UAS software regarding length-based polymorphisms. To improve performance with forensic samples, laboratories could implement mitochondrial-specific qPCR assays for quantification and perform the optional manual normalization protocol. Additional optimization on sample multiplexing can provide methods that either increase sensitivity or cost efficiency of the assay.


Assuntos
Impressões Digitais de DNA , DNA Mitocondrial , Impressões Digitais de DNA/métodos , DNA Mitocondrial/genética , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Reprodutibilidade dos Testes , Análise de Sequência de DNA
11.
Hum Immunol ; 83(1): 61-69, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34728094

RESUMO

Chimerism testing provides informative clinical data regarding the status of a biological sample mixture. For years, this testing was achieved by measuring the peaks of informative short tandem repeat (STR) loci using capillary electrophoresis (CE). With the advent of next generation sequencing (NGS) technology, the quantification of the percentage of donor/recipient mixtures is more easily done using sequence reads in large batches of samples run on a single flow cell. In this study, we present data on using a FORENSIC NGS chimerism platform to accurately measure the percentage of donor/recipient mixtures. We were able to detect chimerism to a limit threshold of 1% using both STR and single nucleotide polymorphism (SNP) informative loci. Importantly, a significant correlation was observed between NGS and CE chimerism methods when compared at donor detection ranges from 1% to 10%. Furthermore, 100% accuracy was achieved through proficiency testing over six surveys. Its usefulness was expanded beyond this to help identify suitable donors for solid organ transplant patients using ancestry SNP profiles. In summary, the NGS method provides a sensitive and reliable alternative to traditional CE for chimerism testing of clinical samples.


Assuntos
Quimerismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único
12.
J Forensic Sci ; 66(5): 1929-1936, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34057738

RESUMO

Rootless hair shafts are often considered unsuitable for STR genotyping due to the known high failure rate. The same samples can be reliably processed with mitochondrial sequencing. However, the minimal discriminatory power of widely implemented control region mitochondrial sequencing techniques limits its utility in some forensic casework. In this research, multiple variables were tested to provide information on rootless hair shaft sample genotyping success. Results showed external decontamination procedures decreased drop-in alleles but also greatly reduced profile recovery. The novel InnoXtract™ chemistry was comparable to automated EZ1 DNA Investigator extraction. With thoroughly decontaminated hairs, InnoTyper® 21 amplification generated random match probabilities higher than STR chemistry in 71.875% of samples and 18.75% of samples benefitted from the use of InnoTyper® 21 amplification compared with estimated mtDNA profile rarity. Compared with the capillary electrophoresis-based amplification chemistries tested, the ForenSeq™ DNA Signature Prep chemistry paired with massively parallel sequencing was the most discriminatory amplification strategy tested.


Assuntos
Impressões Digitais de DNA/métodos , DNA/genética , Genética Forense/métodos , Cabelo/química , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Repetições de Microssatélites , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
13.
Forensic Sci Int Genet ; 55: 102586, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34530399

RESUMO

Forensic DNA laboratories process database reference samples on FTA® cards or buccal swabs, which commonly contain adequate amounts of quality DNA resulting in full STR profiles and high first-pass rates. However, some reference samples and many forensic casework samples are exposed to a variety of insults that may lead to low quantities of DNA, DNA degradation, DNA mixtures, and/or PCR inhibition, posing a challenge to downstream genotyping success. The inclusion of multiple amplification targets and internal PCR controls (IPCs) in DNA quantification kits, and quality sensors within STR amplification kits can aid in the accurate interpretation of sample/profile quality, and guide more efficient rework strategies when needed. In order to assess the effectiveness of these quality systems we subjected database-type samples (buccal swabs and blood or saliva on FTA® cards), mock casework samples (low-template, degraded, inhibited, DNA mixtures), and authentic post-coital samples to various challenging conditions. Concordance between the quality flags in the Investigator® Quantiplex® Pro RGQ kit (QIAGEN), the QS markers in QIAGEN's Investigator® 24plex QS kit, and overall STR profile quality was evaluated for all casework-type samples. To assess the value of the QS markers in the Investigator® 24plex QS and GO! STR kits, samples with partial or failed STR profiles were reworked based on the quality of the electropherogram first with the QS markers redacted, and second in conjunction with the QS markers. Results from each of the rework approaches were compared to determine which strategy, if any, improved the STR profile quality and the number of reportable alleles. The QS markers in the 24plex STR kits correctly confirmed sample quality in 99.9% of databasing samples and 98% of mock casework samples. Quality flags during DNA quantification were concordant with downstream STR profiles for the majority (77%) of the mock casework samples. Additionally, when samples with partial STR profiles were reworked, more loci were obtained for 80% of the samples regardless of the rework strategy used. However, the most notable improvement in STR completeness was observed in inhibited samples that were reworked based on the information provided by the STR quality sensors, with an average increase of 56% reportable alleles.


Assuntos
Impressões Digitais de DNA , Repetições de Microssatélites , DNA/genética , Humanos , Reação em Cadeia da Polimerase , Controle de Qualidade
14.
Nucleic Acids Res ; 33(8): 2751-63, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15891117

RESUMO

Arabidopsis thaliana chloroplasts contain at least two 3' to 5' exoribonucleases, polynucleotide phosphorylase (PNPase) and an RNase R homolog (RNR1). PNPase has been implicated in both mRNA and 23S rRNA 3' processing. However, the observed maturation defects do not affect chloroplast translation, suggesting that the overall role of PNPase in maturation of chloroplast rRNA is not essential. Here, we show that this role can be largely ascribed to RNR1, for which homozygous mutants germinate only on sucrose-containing media, and have white cotyledons and pale green rosette leaves. Accumulation of chloroplast-encoded mRNAs and tRNAs is unaffected in such mutants, suggesting that RNR1 activity is either unnecessary or redundant for their processing and turnover. However, accumulation of several chloroplast rRNA species is severely affected. High-resolution RNA gel blot analysis, and mapping of 5' and 3' ends, revealed that RNR1 is involved in the maturation of 23S, 16S and 5S rRNAs. The 3' extensions of the accumulating 5S rRNA precursors can be efficiently removed in vitro by purified RNR1, consistent with this view. Our data suggest that decreased accumulation of mature chloroplast ribosomal RNAs leads to a reduction in the number of translating ribosomes, ultimately compromising chloroplast protein abundance and thus plant growth and development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Exorribonucleases/metabolismo , Regulação da Expressão Gênica de Plantas , Processamento de Terminações 3' de RNA , RNA de Cloroplastos/metabolismo , RNA Ribossômico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Catálise , Exorribonucleases/classificação , Exorribonucleases/genética , Mutagênese Insercional , Fotossíntese , Polirribossomos/metabolismo , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , RNA de Plantas/biossíntese , RNA Ribossômico 5S/metabolismo
16.
Science ; 342(6163): 1245533, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24200811

RESUMO

Environmental and hormonal signals cause reorganization of microtubule arrays in higher plants, but the mechanisms driving these transitions have remained elusive. The organization of these arrays is required to direct morphogenesis. We discovered that microtubule severing by the protein katanin plays a crucial and unexpected role in the reorientation of cortical arrays, as triggered by blue light. Imaging and genetic experiments revealed that phototropin photoreceptors stimulate katanin-mediated severing specifically at microtubule intersections, leading to the generation of new microtubules at these locations. We show how this activity serves as the basis for a mechanism that amplifies microtubules orthogonal to the initial array, thereby driving array reorientation. Our observations show how severing is used constructively to build a new microtubule array.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Microtúbulos/metabolismo , Fototropismo , Adenosina Trifosfatases/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Hipocótilo/metabolismo , Hipocótilo/ultraestrutura , Katanina , Luz , Microtúbulos/ultraestrutura , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais
17.
Plant Mol Biol ; 69(5): 541-52, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19067181

RESUMO

The chloroplast protein CSP41a both binds and cleaves RNA, particularly in stem-loops, and has been found associated with ribosomes. A related protein, CSP41b, co-purifies with CSP41a, ribosomes, and the plastid-encoded RNA polymerase. Here we show that Arabidopsis CSP41a and CSP41b interact in vivo, and that a csp41b null mutant becomes depleted of CSP41a in mature leaves, correlating with a pale green phenotype and reduced accumulation of the ATP synthase and cytochrome b ( 6 )/f complexes. RNA gel blot analyses revealed up to four-fold decreases in accumulation for some chloroplast RNAs, which run-on experiments suggested could tentatively be ascribed to decreased transcription. Depletion of both CSP41a and CSP41b triggered a promoter switch whereby atpBE became predominately transcribed from its nucleus-encoded polymerase promoter as opposed to its plastid-encoded polymerase promoter. Together with published proteomic data, this suggests that CSP41a and/or CSP41b enhances transcription by the plastid-encoded polymerase. Gradient analysis of rRNAs in the mutant suggest a defect in polysome assembly or stability, suggesting that CSP41a and/or CSP41b, which are not present in polysomal fractions, stabilize ribosome assembly intermediates. Although psbA and rbcL mRNAs are normally polysome-associated in the mutant, petD-containing RNAs have diminished association, perhaps accounting for reduced accumulation of its respective multimeric complex. In conclusion, our data suggest that CSP41a and CSP41b stimulate both transcription and translation in the chloroplast.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Biossíntese de Proteínas , RNA de Cloroplastos/genética , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica , Arabidopsis/metabolismo , Clorofila/metabolismo , Cloroplastos/genética , Regulação da Expressão Gênica de Plantas , Mutação/genética , Fotossíntese , Folhas de Planta/genética , Polirribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 5S/metabolismo , Fator sigma/metabolismo
18.
Nat Cell Biol ; 11(7): 797-806, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19525940

RESUMO

Plant cell morphogenesis relies on the organization and function of two polymer arrays separated by the plasma membrane: the cortical microtubule cytoskeleton and cellulose microfibrils in the cell wall. Studies using in vivo markers confirmed that one function of the cortical microtubule array is to drive organization of cellulose microfibrils by guiding the trajectories of active cellulose synthase (CESA) complexes in the plasma membrane, thus orienting nascent microfibrils. Here we provide evidence that cortical microtubules also position the delivery of CESA complexes to the plasma membrane and interact with small CESA-containing compartments by a mechanism that permits motility driven by microtubule depolymerization. The association of CESA compartments with cortical microtubules was greatly enhanced during osmotic stress and other treatments that limit cellulose synthesis. On recovery from osmotic stress, delivery of CESA complexes to the plasma membrane was observed in association with microtubule-tethered compartments. These results reveal multiple functions for the microtubule cortical array in organizing CESA in the cell cortex.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transporte Biológico/fisiologia , Membrana Celular/metabolismo , Glucosiltransferases/metabolismo , Microtúbulos/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Transporte Biológico/genética , Microscopia Confocal , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética
19.
Proc Natl Acad Sci U S A ; 104(14): 5854-9, 2007 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-17389408

RESUMO

Morlin (7-ethoxy-4-methyl chromen-2-one) was discovered in a screen of 20,000 compounds for small molecules that cause altered cell morphology resulting in swollen root phenotype in Arabidopsis. Live-cell imaging of fluorescently labeled cellulose synthase (CESA) and microtubules showed that morlin acts on the cortical microtubules and alters the movement of CESA. Morlin caused a novel syndrome of cytoskeletal defects, characterized by cortical array reorientation and compromised rates of both microtubule elongation and shrinking. Formation of shorter and more bundled microtubules and detachment from the cell membrane resulted when GFP::MAP4-MBP was used to visualize microtubules during morlin treatment. Cytoskeletal effects were accompanied by a reduction in the velocity and redistribution of CESA complexes labeled with YFP::CESA6 at the cell cortex. Morlin caused no inhibition of mouse myoblast, bacterial or fungal cell proliferation at concentrations that inhibit plant cell growth. By contrast, morlin stimulated microtubule disassembly in cultured hippocampal neurons but had no significant effect on cell viability. Thus, morlin appears to be a useful new probe of the mechanisms that regulate microtubule cortical array organization and its functional interaction with CESA.


Assuntos
Arabidopsis/citologia , Cumarínicos/farmacologia , Inibidores Enzimáticos/farmacologia , Glucosiltransferases/metabolismo , Microtúbulos/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Cumarínicos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Proteínas de Fluorescência Verde/metabolismo , Cinética , Microscopia Confocal , Microscopia de Vídeo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Modelos Químicos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa