Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39202846

RESUMO

A concept to prepare a highly hydrophobic composite with self-healing properties has been designed and verified. The new material is based on a composite of a crystalline hydrophobic fluoro wax, synthesized from montan waxes and perfluoroethylene alcohols, combined with spherical silica nanoparticles equipped with a hydrophobic shell. Highly repellent layers were prepared using this combination of a hydrophobic crystalline wax and silica nanoparticles. The novel aspect of our concept was to prepare a ladder-like structure of the hydrophobic shell allowing the inclusion of a certain share of wax molecules. Wax molecules trapped in the hydrophobic structure during mixing are hindered from crystallizing; therefore, these molecules maintain a higher mobility compared to crystallized molecules. When a thin layer of the composite material is mechanically damaged, the mobile wax molecules can migrate and heal the defects to a certain extent. The general preparation of the composite is described and XRD analysis demonstrated that a certain share of wax molecules in the composite are hindered to crystallize. Furthermore, we show that the resulting material can recovery its repellent properties after surface damage.

2.
Electrophoresis ; 43(13-14): 1387-1398, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35531709

RESUMO

Megaporous adsorbents were prepared based on nonwoven polyethylene terephthalate (PET) fabrics and functionalized by covalent modification with polyvinylamine (PVAm) or monotriazinyl-ß-cyclodextrin-substituted polyvinylamine (PVAm-MCT-ß-CD). Mechanical properties of the resulting fabrics were maintained, as judged by tensile strength tests and scanning electron microscopy. Exceptional porosity (≥82%) and preserved hydrodynamic characteristics (Pe ≥ 63) indicated excellent structural stability when packed. The performance of the constructed adsorbents was evaluated with high molecular weight (proteins) and low molecular weight (dyes) model compounds. The static binding capacity (SBC) for bovine serum albumin (BSA) was 79.7 ± 1.3 and 92.9 ± 8.2 mg/g for PVAm-modified and PVAm-MCT-ß-CD-modified fabrics, respectively. The mentioned materials also adsorbed Orange II, an acidic dye (92.4 ± 2.6 and 101.9 ± 2.6 mg/g, respectively), indicating that the hydrophobicity was a prevailing binding mechanism operating at a pH close to isoelectric point. SBC for lysozyme and toluidine blue O (TBO, a basic dye) onto PVAm-MCT-ß-CD functionalized PET was 52.7 ± 5.1 and 73.3 ± 0.6 mg/g, respectively. TBOs have also shown some affinity for PVAm functionalized PET, but this was most likely to be mediated by hydrophobicity. On the other hand, operating at a superficial velocity of 90 cm/h, dynamic binding capacity for BSA was 11.4 ± 3.5 and 2.5 ± 0.6 mg/g indicating the importance of possible aggregation mechanisms during protein binding at equilibrium. Thus, PET-based adsorbents require further functional improvement for chromatography applications. However, the easy-to-construct, scalable nonwoven adsorbents deserve further attention as a potential alternative to packed-bed-chromatography adsorbents.


Assuntos
Soroalbumina Bovina , Têxteis , Adsorção , Corantes , Porosidade , Ligação Proteica , Soroalbumina Bovina/química
3.
Soft Matter ; 18(2): 365-371, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34889343

RESUMO

We investigate the shrinkage of a surface-grafted water-swollen hydrogel under shear flows of oils by laser scanning confocal microscopy. Interestingly, external shear flows of oil lead to linear dehydration and shrinkage of the hydrogel for all investigated flow conditions irrespective of the chemical nature of the hydrogel. The reason is that the finite solubility of water in oil removes water from the hydrogel continuously by diffusion. The flow advects the water-rich oil, as demonstrated by numerical solutions of the underlying convection-diffusion equation. In line with this hypothesis, shear does not cause gel shrinkage for water-saturated oils or non-solvents. The solubility of water in the oil will tune the dehydration dynamics.

4.
Chembiochem ; 22(2): 398-407, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32798264

RESUMO

Singlet oxygen is a reactive oxygen species undesired in living cells but a rare and valuable reagent in chemical synthesis. We present a fluorescence spectroscopic analysis of the singlet-oxygen formation activity of commercial peroxidases and novel peroxygenases. Singlet-oxygen sensor green (SOSG) is used as fluorogenic singlet oxygen trap. Establishing a kinetic model for the reaction cascade to the fluorescent SOSG endoperoxide permits a kinetic analysis of enzymatic singlet-oxygen formation. All peroxidases and peroxygenases show singlet-oxygen formation. No singlet oxygen activity could be found for any catalase under investigation. Substrate inhibition is observed for all reactive enzymes. The commercial dye-decolorizing peroxidase industrially used for dairy bleaching shows the highest singlet-oxygen activity and the lowest inhibition. This enzyme was immobilized on a textile carrier and successfully applied for a chemical synthesis. Here, ascaridole was synthesized via enzymatically produced singlet oxygen.


Assuntos
Oxigenases de Função Mista/metabolismo , Peroxidases/metabolismo , Oxigênio Singlete/metabolismo , Corantes Fluorescentes/química , Oxigenases de Função Mista/química , Estrutura Molecular , Peroxidases/química , Oxigênio Singlete/química
5.
Molecules ; 26(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34946742

RESUMO

Dynamic tensiometry is shown to be a high-potential analytical tool in assessing physico-chemical characteristics of fragrance molecules, such as solubility limit, volatility as well as much rarely assessed interfacial activity of these amphiphilic molecules. Surface tension of aqueous solutions of selected essential oils has been measured as a function of time and fragrance concentration using maximum bubble pressure method. The effect of the temperature and saline solution on the rate of dissolution in water was assessed. Dynamic surface tension turned to be sensitive to the composition of fragrances, as demonstrated on examples of natural and synthetic mixtures. Furthermore, presented work reveals the possibility of maximum bubble pressure tensiometry method to quantify the amount of fragrance compositions in flavored salts, including the artificially aged carrier samples. Suggested here analytical approach can be used for the detection of the purity of essential oils, for the optimization of compositions and of the manufacturing processes of fragrances-containing products, as well as for the assessment of the release/evaporation of fragrances from carrier systems.


Assuntos
Odorantes/análise , Óleos Voláteis/análise , Perfumes/análise , Água/química , Solubilidade , Tensão Superficial
6.
Angew Chem Int Ed Engl ; 60(3): 1465-1473, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-32964609

RESUMO

NIR-sensitized cationic polymerization proceeded with good efficiency, as was demonstrated with epoxides, vinyl ether, and oxetane. A heptacyanine functioned as sensitizer while iodonium salt served as coinitiator. The anion adopts a special function in a series selected from fluorinated phosphates (a: [PF6 ]- , b: [PF3 (C2 F5 )3 ]- , c: [PF3 (n-C4 F9 )3 ]- ), aluminates (d: [Al(O-t-C4 F9 )4 ]- , e: [Al(O(C3 F6 )CH3 )4 ]- ), and methide [C(O-SO2 CF3 )3 ]- (f). Vinyl ether showed the best cationic polymerization efficiency followed by oxetanes and oxiranes. DFT calculations provided a rough pattern regarding the electrostatic potential of each anion where d showed a better reactivity than e and b. Formation of interpenetrating polymer networks (IPNs) using trimethylpropane triacrylate and epoxides proceeded in the case of NIR-sensitized polymerization where anion d served as counter ion in the initiator system. No IPN was formed by UV-LED initiation using the same monomers but thioxanthone/iodonium salt as photoinitiator. Exposure was carried out with new NIR-LED devices emitting at either 805 or 870 nm.

7.
Chemistry ; 26(46): 10444-10451, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32343443

RESUMO

NIR exposure at 790 nm activated photopolymerization of monomers comprising UV-absorbing moieties by using [CuII /(TPMA)]Br2 (TPMA=tris(2-pyridylmethyl)amine) in the ppm range and an alkyl bromide as initiator. Some of them comprised structural elements selected either from those showing proton transfer or photocycloaddition upon UV excitation. Polymers obtained comprise living end groups serving as macroinitiator for controlled synthesis of block copolymers with relatively narrow molecular weight distributions. Chromatographic results indicated formation of block copolymers produced by this synthetic approach. Free-radical polymerization of monomers pursued for comparison exhibited the expected broader dispersity of molecular weight compared to photo-ATRP. Polymerization of these monomers by UV photo-ATRP failed on the contrary to NIR photo-ATRP demonstrating the UV-filter function of the monomers. This work conclusively provides a new approach for the polymerization of monomers comprising UV-absorbing moieties through photo-ATRP in the NIR region. This occurred in a simple and efficient pathway. However, studies also showed that not all monomers chosen successfully proceeded in the NIR photo-ATRP protocol.

8.
Molecules ; 24(17)2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31455031

RESUMO

Poly- and cyclophosphazenes are excellent flame retardants but currently, are not used as textile finishing agents because water-soluble and permanent washing systems are missing. Here, we demonstrate for the first time, the successful usage of a water-soluble cyclotriphosphazene derivative for textile finishing for cotton, different cotton/polyester, and cotton/polyamide blend fabrics. A durable finish was achieved using a photoinduced grafting reaction. The flame retardant properties of the various fabrics were improved with a higher limiting oxygen index, a reduced heat release rate, and an exhibition of intumescent. Furthermore, the finished textiles passed several standardized flammability tests.


Assuntos
Retardadores de Chama/síntese química , Química Verde/métodos , Compostos Organofosforados/síntese química , Microscopia Eletrônica de Varredura , Compostos Organofosforados/química , Solubilidade , Têxteis , Termogravimetria
9.
Small ; 14(30): e1801461, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29968418

RESUMO

For many applications, mesoporous titania nanostructures are exposed to water or need to be backfilled via infiltration with an aqueous solution, which can cause deformations of the nanostructure by capillary forces. In this work, the degree of deformation caused by water infiltration in two types of mesoporous, nanostructured titania films exposed to water vapor is compared. The different types of nanostructured titania films are prepared via a polymer template assisted sol-gel synthesis in conjunction with a polymer-template removal at high-temperatures under ambient conditions versus nitrogen atmosphere. Information about surface and inner morphology is extracted by scanning electron microscopy and grazing incidence small-angle neutron scattering (GISANS) measurements, respectively. Furthermore, complementary information on thin film composition and porosity are probed via X-ray reflectivity. The backfilling induced deformation of near surface structures and structures inside the mesoporous titania films is determined by GISANS before and after D2 O infiltration. The respective atmosphere used for template removal influences the details of the titania nanostructure and strongly impacts the degree of water induced deformation. Drying of the films shows reversibility of the deformation.

10.
Langmuir ; 34(24): 7021-7027, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29786433

RESUMO

Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) is applied to study the self-diffusion of poly(ethylene glycol) solutions in the presence of weakly attractive interfaces. Glass coverslips modified with aminopropyl- and propyl-terminated silanes are used to study the influence of solid surfaces on polymer diffusion. A model of three phases of polymer diffusion allows to describe the experimental fluorescence autocorrelation functions. Besides the two-dimensional diffusion of adsorbed polymer on the substrate and three-dimensional free diffusion in bulk solution, a third diffusion time scale is observed with intermediate diffusion times. This retarded three-dimensional diffusion in the solution is assigned to the long-range effects of solid surfaces on diffusional dynamics of polymers. The respective diffusion constants show Rouse scaling ( D ∼ N-1), indicating a screening of hydrodynamic interactions by the presence of the surface. Hence, the presented TIR-FCS method proves to be a valuable tool to investigate the effect of surfaces on polymer diffusion beyond the first adsorbed polymer layer on the 100 nm length scale.

11.
Anal Bioanal Chem ; 410(17): 4109-4122, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29707751

RESUMO

The carbodiimide-mediated amine coupling of protein ligands to sensor chips coated with anionic polycarboxylate hydrogels, such as carboxymethyl dextran, is the predominant covalent immobilization procedure utilized in optical biosensors, namely surface plasmon resonance (SPR) biosensors. Usually, electrostatic interactions at a slightly acidic pH and low ionic strength are employed to efficiently accumulate neutral and basic ligands on the chip surface, which are then covalently coupled by surface-bound active N-hydroxysuccinimide (NHS) esters. Unfortunately, this approach is not suitable for acidic proteins or other ligands with low isoelectric points (IEPs), such as nucleic acids, because the charge density of the polycarboxylates is greatly reduced at acidic pH or because electrostatic attraction cannot be achieved. To overcome these drawbacks, we have established a charge-reversal approach that allows the preconcentration of acidic proteins above their IEPs. A precisely controlled amount of tertiary amines is applied to reverse the previous anionic surface charge while maintaining carbodiimide compatibility with future protein immobilization. The mechanism of this reversed-charge immobilization approach was demonstrated employing protein A as a model protein and using attenuated total reflectance Fourier transform infrared spectroscopy, dynamic contact angle measurements, colorimetric quantification, and SPR analysis to characterize surface derivatization. Furthermore, even though it had previously proven impossible to preconcentrate DNA electrostatically and to covalently couple it to polyanionic chip surfaces, we demonstrated that our approach allowed DNA to be preconcentrated and immobilized in good yields. Graphical abstract Principle of the covalent immobilization of acidic ligands on reversed-charge zwitterionic sensor chip surfaces.


Assuntos
Técnicas Biossensoriais , Carbodi-Imidas/química , DNA/química , Colorimetria , Estrutura Molecular , Compostos de Amônio Quaternário , Espectroscopia de Infravermelho com Transformada de Fourier , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
12.
Langmuir ; 31(32): 8947-52, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26161944

RESUMO

Highly ordered block copolymer thin films have been studied extensively during the last years because they afford versatile self-assembled morphologies via a bottom-up approach. They promise to be used in applications such as polymeric membranes or templates for nanostructured materials. Among the block copolymer structures, perpendicular cylinders have received strong attention due to their ability to fabricate highly ordered nanopores and nanowires. Nanopores can be created from a thin block copolymer film upon the removal of one block by selective etching or by dissolution of one polymer block. Here we demonstrate the utilization of polystyrene-block-poly(ethylene oxide) diblock copolymer (PS-hν-PEO) with an ortho-nitrobenzyl ester (ONB) as the photocleavable block-linker to create highly ordered thin films. Removal of the PEO block by choosing an appropriate solvent upon photocleavage is expected to yield arrays of nanopores decorated with functional groups, thus lending itself to adsorption or filtration uses. While the feasibility of this approach has been demonstrated, it is crucial to understand the influence of removal conditions (i.e., efficiency of photocleavage as well as best washing solvent) and to evaluate changes in the surface topology and inner structure upon photocleavage. To this end, the time dependence evolution of the surface morphology of block copolymer thin films was studied using grazing-incidence small-angle X-ray scattering (GISAXS) technique in combination with scanning probe microscopy.

13.
Langmuir ; 30(11): 3127-31, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24628481

RESUMO

The wetting dynamic on microrough and perfectly wetting (superhydrophilic) acrylates was studied. These surfaces were achieved by coating polymer films made of poly(ethyleneterephthalate) (PET) with a hydrophilic acrylate based on hydroxypropylacrylate and polyethyleneglycolmonoacrylate, which was then cured and microroughened by photonic microfolding. The high transparency of the thin acrylate layers and polymer films allowed us to record the spreading of an applied water droplet through the film samples. Subsequently, the dynamic radius of the spreading pattern rc(t) was determined from the video recording. Various models for the wetting dynamics of superhydrophilic surfaces, namely, Tanner's law and a roughness-modified derivation published by McHale et al. in 2009, were then compared to the experimental results. Basically, the development of rc(t) in time was found to be in good agreement with McHale's model. Data analysis showed, however, that the initial phase of the spreading, that is, for t < 1 s, was not predicted well. This differing behavior relates well to a theory published by Cazabat and Cohen Stuart, who proposed that, on rough surfaces, spreading follows a power law in three time regimes. In this model, the (very) initial spreading is expected to be similar to the spreading on a smooth surface.

14.
Chemphyschem ; 14(3): 597-602, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23307619

RESUMO

A low-temperature route to directly obtain polymer/titania hybrid films is presented. For this, a custom-made poly(3-alkoxy thiophene) was synthesized and used in a sol-gel process together with an ethylene-glycol-modified titanate (EGMT) as a suitable titania precursor. The poly(3-alkoxy thiophene) was designed to act as the structure-directing agent for titanium dioxide through selective incorporation of the titania precursor. The nanostructured titania network, embedded in the polymer matrix, is examined with atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurements. By means of the scattering technique grazing incidence wide-angle X-ray scattering (GIWAXS), a high degree of crystallinity of the polymer as well as successful transformation of the precursor into the rutile phase of titania is verified. UV/Vis measurements reveal an absorption behavior around 500 nm which is similar to poly(3-hexyl thiophene), a commonly used polymer for photoelectronic applications, and in addition, the typical UV absorption behavior of rutile titania is observed.

15.
Chem Soc Rev ; 41(15): 5131-42, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22415549

RESUMO

Nanostructured titania films are of growing interest due to their application in future photovoltaic technologies. Therefore, a lot of effort has been put into the controlled fabrication and tailoring of titania nanostructures. The controlled sol-gel synthesis of titania, in particular in combination with block copolymer templates, is very promising because of its high control on the nanostructure, easy application and cheap processing possibilities. This tutorial review gives a short overview of the structural control of titania films gained by using templated sol-gel chemistry and shows how this approach is extended by the addition of further functionality to the films. Different expansions of the sol-gel templating are possible by the fabrication of gradient samples, by the addition of a homopolymer, by the combination with micro-fluidics and also by the application of novel precursors for low-temperature processing. Moreover, hierarchically structured titania films can be fabricated via the subsequent application of several sol-gel steps or via the inclusion of colloidal templates in a one-step process. Integrated function in the block copolymer used in the sol-gel synthesis allows for the fabrication of an integrated blocking layer or an integrated hole-conductor. Both approaches grant a one-step fabrication of two components of a working solar cell, which make them very promising towards a cheap solar cell production route. Looking to the complete solar cell, the top contact is also of great importance as it influences the function of the whole solar cell. Thus, the mechanisms acting in the top contact formation are also reviewed. For all these aspects, characterization techniques that allow for a structural investigation of nanostructures inside the active layers are important. Therefore, the characterization techniques that are used in real space as well as in reciprocal space are explained shortly as well.

16.
ACS Appl Mater Interfaces ; 15(1): 1984-1995, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36573577

RESUMO

Additives are widely used to improve the processability, toughness, and hydrolytic resistance of poly(lactic acid) (PLA)-based materials. This study compares neat PLA fibers and fibers made from PLA blends with either poly(butylene succinate) (PBS) as a plasticizer or poly(d-lactic acid) (PDLA) as a nucleating agent. The fibers have been characterized with regard to their physical and structural properties after fabrication as well as after artificial aging at elevated temperature and humidity conditions. All samples have been fabricated using industrial melt-spinning equipment, resulting in a high crystallinity of about XC = 80% and a good initial toughness. Long-term relaxation behavior has been assessed with a self-developed lifetime prediction model, which is successfully verified for semicrystalline blended fibers. Despite slight improvement of the fiber elasticity and ductility, both types of blended fibers demonstrated a reduced hydrolytic resistance. These results suggest a design strategy for neat durable PLA fibers through processing-induced high crystallinity and orientation, which provide improved hydrolytic stability while preserving tough mechanical performance.

17.
Artigo em Inglês | MEDLINE | ID: mdl-37917042

RESUMO

A modular tool box for photoresponsive cholesteric liquid crystals based on hydrogen-bonded assemblies is reported. By employing 3-azopyridines as photoswitch in cholesteric liquid-crystalline thin films, a fast and reversible blue shift is observed upon irradiation, allowing tuning of the structural color over the whole visible electromagnetic spectrum. Investigations of the materials via X-ray diffraction studies indicate that the blue shift is attributed to the photoinduced destruction of smectic clusters in the cholesteric phase, resulting in a contraction of the helical structure. Unprecedently, the use of a stereolithography 3D printer (SLA) allowed direct transfer of digital information into a multicolor photonic pattern, an important step toward photonic imaging and data storage.

18.
Gels ; 9(10)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37888368

RESUMO

Thin, flat textile roofing offers negligible heat insulation. In warm areas, such roofing membranes are therefore equipped with metallized surfaces to reflect solar heat radiation, thus reducing the warming inside a textile building. Heat reflection effects achieved by metallic coatings are always accompanied by shading effects as the metals are non-transparent for visible light (VIS). Transparent conductive oxides (TCOs) are transparent for VIS and are able to reflect heat radiation in the infrared. TCOs are, e.g., widely used in the display industry. To achieve the perfect coatings needed for electronic devices, these are commonly applied using costly vacuum processes at high temperatures. Vacuum processes, on account of the high costs involved and high processing temperatures, are obstructive for an application involving textiles. Accepting that heat-reflecting textile membranes demand less perfect coatings, a wet chemical approach has been followed here when producing transparent heat-reflecting coatings. Commercially available TCOs were employed as colloidal dispersions or nanopowders to prepare sol-gel-based coating systems. Such coatings were applied to textile membranes as used for architectural textiles using simple coating techniques and at moderate curing temperatures not exceeding 130 °C. The coatings achieved about 90% transmission in the VIS spectrum and reduced near-infrared transmission (at about 2.5 µm) to nearly zero while reflecting up to 25% of that radiation. Up to 35% reflection has been realized in the far infrared, and emissivity values down to ε = 0.5777 have been measured.

19.
Front Bioeng Biotechnol ; 11: 1135447, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324416

RESUMO

A continuous protein recovery and purification system based on the true moving bed concept is presented. A novel adsorbent material, in the form of an elastic and robust woven fabric, served as a moving belt following the general designs observed in known belt conveyors. The composite fibrous material that forms the said woven fabric showed high protein binding capacity, reaching a static binding capacity equal to 107.3 mg/g, as determined via isotherm experiments. Moreover, testing the same cation exchange fibrous material in a packed bed format resulted in excellent dynamic binding capacity values (54.5 mg/g) even when operating at high flow rates (480 cm/h). In a subsequent step, a benchtop prototype was designed, constructed, and tested. Results indicated that the moving belt system could recover a model protein (hen egg white lysozyme) with a productivity up to 0.5 mg/cm2/h. Likewise, a monoclonal antibody was directly recovered from unclarified CHO_K1 cell line culture with high purity, as judged by SDS-PAGE, high purification factor (5.8), and in a single step, confirming the suitability and selectivity of the purification procedure.

20.
Nanomaterials (Basel) ; 13(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37049289

RESUMO

The COVID-19 pandemic has increased the usage of personal protective equipment (PPE) all round the world and, in turn, it has also increased the waste caused by disposable PPE. This has exerted a severe environmental impact, so in our work, we propose the utilization of a sustainable electrospun nanofiber based on poly lactic acid (PLA), as it is biobased and conditionally degradable. We optimized the weight percentage of the PLA-precursor solution and found that 19% PLA produces fine nanofibers with good morphology. We also introduced carbon nanodots (CNDs) in the nanofibers and evaluated their antibacterial efficiency. We used 1, 2, 3, and 4% CNDs with 19% PLA and found increased antibacterial activity with increased concentrations of CNDs. Additionally, we also applied a spunbond-nanofiber layered assembly for the medical face masks and found that with the addition of only 0.45 mg/cm2 on the nonwoven sheet, excellent particle filtration efficiency of 96.5% and a differential pressure of 39 Pa/cm2 were achieved, meeting the basic requirements for Type I medical face masks (ASTM-F2100).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa