Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(25): e2205893, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942857

RESUMO

The application of machine learning is demonstrated for rapid and accurate extraction of plasmonic particles cluster geometries from hyperspectral image data via a dual variational autoencoder (dual-VAE). In this approach, the information is shared between the latent spaces of two VAEs acting on the particle shape data and spectral data, respectively, but enforcing a common encoding on the shape-spectra pairs. It is shown that this approach can establish the relationship between the geometric characteristics of nanoparticles and their far-field photonic responses, demonstrating that hyperspectral darkfield microscopy can be used to accurately predict the geometry (number of particles, arrangement) of a multiparticle assemblies below the diffraction limit in an automated fashion with high fidelity (for monomers (0.96), dimers (0.86), and trimers (0.58). This approach of building structure-property relationships via shared encoding is universal and should have applications to a broader range of materials science and physics problems in imaging of both molecular and nanomaterial systems.

2.
Nano Lett ; 21(14): 6124-6131, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34269589

RESUMO

As easy-to-grow quantum wells with narrow excitonic features at room temperature, two-dimensional (2D) Ruddleson-Popper perovskites are promising for realizing novel nanophotonic devices based on exciton-photon interactions. Here, we demonstrate a distinct hybrid exciton-photon Fano resonance in (C4H9NH3)2PbI4 thin films prepared via spin coating. Using a classical coupled-oscillator model and finite-difference time-domain simulations, we link the Fano interference to the coupling of the exciton with the Rayleigh-like scattering of the film microstructure. Combining colloidal plasmonic cavities with the 2D perovskite films, we demonstrate tuning of the Fano resonance. In combination with silver nanoparticles, the exciton-photon Fano interference couples to the in-plane plasmonic modes with indications of Rabi splitting. By creating a nanoparticle on mirror geometry, we address the out-of-plane excitonic component, reaching an intermediate coupling regime. These structures suggest possible photonic targets for biomolecular self-assembly applications.


Assuntos
Nanopartículas Metálicas , Compostos de Cálcio , Óxidos , Prata , Titânio
3.
Langmuir ; 37(30): 9111-9119, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34309385

RESUMO

We study the protein-directed assembly of colloidal gold nanoparticles on de novo designed protein nanofiber templates. Using sequential assembly on glass substrates, we attach positively charged gold nanoparticles to protein nanofibers engineered to have a high density of negatively charged surface residues. Using a combination of electron and optical microscopy, we measure the density of particle attachment and characterize binding specificity. By varying nanoparticle size and pH of the solution, we explore the importance of charge-dependent particle-fiber and particle-substrate interactions. We find an inverse correlation between particle size and attachment density to protein nanofibers, attributed to the balance between size-dependent electrostatic particle-fiber attraction and particle-substrate repulsion. We show pH-dependent particle attachment density and binding specificity in relation to the protonation fraction of each assembly layer. Finally, we employ hyperspectral scattering microscopy to draw conclusions about particle density and interparticle spacings of optically observable particle assemblies.


Assuntos
Nanopartículas Metálicas , Nanofibras , Ouro , Tamanho da Partícula
4.
Langmuir ; 37(33): 10126-10134, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34369796

RESUMO

We synthesize and characterize a triblock polymer with asymmetric tetramethoxyazobenzene (TMAB) and ß-cyclodextrin functionalization, taking advantage of the well-characterized azobenzene derivative-cyclodextrin inclusion complex to promote photoresponsive, self-contained folding of the polymer in an aqueous system. We use 1H NMR to show the reversibility of (E)-to-(Z) and (Z)-to-(E) TMAB photoisomerization, and evaluate the thermal stability of (Z)-TMAB and the comparatively rapid acid-catalyzed thermal (Z)-to-(E) isomerization. Important for its potential use as a functional material, we show the photoisomerization cyclability of the polymeric TMAB chromophore and calculate isomerization quantum yields by extinction spectroscopy. To verify self-inclusion of the polymeric TMAB and cyclodextrin, we use two-dimensional 1H NOESY NMR data to show proximity of TMAB and cyclodextrin in the (E)-state only; however, (Z)-TMAB is not locally correlated with cyclodextrin. Finally, the observed decrease in photoisomerization quantum yield for the dual-functionalized polymer compared to the isolated chromophore in an aqueous solution confirms TMAB and ß-cyclodextrin not only are in proximity to one another, but also form the inclusion complex.


Assuntos
Ciclodextrinas , Polímeros Responsivos a Estímulos , beta-Ciclodextrinas , Espectroscopia de Ressonância Magnética , Polímeros
5.
Soft Matter ; 17(25): 6109-6115, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34128040

RESUMO

In this study, we focus on exploring the directional assembly of anisotropic Au nanorods along de novo designed 1D protein nanofiber templates. Using machine learning and automated image processing, we analyze scanning electron microscopy (SEM) images to study how the attachment density and alignment fidelity are influenced by variables such as the aspect ratio of the Au nanorods, and the salt concentration of the solution. We find that the Au nanorods prefer to align parallel to the protein nanofibers. This preference decreases with increasing salt concentration, but is only weakly sensitive to the nanorod aspect ratio. While the overall specific Au nanorod attachment density to the protein fibers increases with increasing solution ionic strength, this increase is dominated primarily by non-specific binding to the substrate background, and we find that greater specific attachment (nanorods attached to the nanofiber template as compared to the substrates) occurs at the lower studied salt concentrations, with the maximum ratio of specific to non-specific binding occurring when the protein fiber solutions are prepared in 75 mM NaCl concentration.


Assuntos
Nanofibras , Nanotubos , Anisotropia , Ouro , Microscopia Eletrônica de Varredura
6.
Adv Mater ; 35(3): e2207543, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36281797

RESUMO

Sequence-defined foldamers that self-assemble into well-defined architectures are promising scaffolds to template inorganic mineralization. However, it has been challenging to achieve robust control of nucleation and growth without sequence redesign or extensive experimentation. Here, peptoid nanotubes functionalized with a panel of solid-binding proteins are used to mineralize homogeneously distributed and monodisperse anatase nanocrystals from the water-soluble TiBALDH precursor. Crystallite size is systematically tuned between 1.4 and 4.4 nm by changing protein coverage and the identity and valency of the genetically engineered solid-binding segments. The approach is extended to the synthesis of gold nanoparticles and, using a protein encoding both material-binding specificities, to the fabrication of titania/gold nanocomposites capable of photocatalysis under visible-light illumination. Beyond uncovering critical roles for hierarchical organization and denticity on solid-binding protein mineralization outcomes, the strategy described herein should prove valuable for the fabrication of hierarchical hybrid materials incorporating a broad range of inorganic components.


Assuntos
Nanopartículas Metálicas , Nanotubos , Peptoides , Peptoides/química , Ouro , Proteínas , Nanotubos/química
7.
ACS Appl Mater Interfaces ; 10(10): 8976-8984, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29443499

RESUMO

We synthesize and characterize stimulus-responsive nanocomposites consisting of poly( N-isopropylacrylamide) (PNIPAM) with controlled loadings of anisotropic plate-like silver nanoprisms. These composites show strong, reversible switching of their optical extinction and scattering properties in response to temperature cycling. We use UV-vis-NIR spectroscopy and dynamic light scattering to characterize the hybrids and show that the loading density of the silver nanoprisms in the polymer and the size of the nanoprisms are both factors that can be used to tailor the optical response of the composites, extending the range of colors beyond that previously reported with PNIPAM/plasmonic nanoparticle composites. These PNIPAM/silver nanoprism hybrids exhibit thermochromic shifts that are 5-10 times larger than those typically reported for similar structures of PNIPAM composites with silver nanoparticles of a comparable range of loading density. In addition, we show that these composites can exhibit very large ratiometric changes in scattering in the NIR, which could open applications for related materials in thermal management and NIR labeling and taggants.

8.
J Phys Chem B ; 121(5): 1092-1099, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28075134

RESUMO

Responsive nanomaterials composed of gold nanoparticles (AuNPs) and temperature-responsive poly(N-isopropylacrylamide) (PNIPAM) hydrogels offer the promise of designing smart materials that can change color in response to varying thermal or photothermal stimuli. Typical PNIPAM/AuNP hybrids are heavily loaded with AuNPs. Here, we demonstrate that hybrids with an average loading of three to five AuNPs per PNIPAM sphere exhibit peak extinction shifts of over 150 nm and color change from red to purple to gray as the temperature increases from 25 to 50 °C. We observe that the time scale for spectral shifts is offset from that for hydrophobic collapse of the PNIPAM spheres. Facilitated by the low loading density, we combine kinetic studies of the changes in the extinction spectra with finite-difference time-domain simulations to show that the location of AuNPs relative to the PNIPAM sphere at different stages of collapse is a key variable accounting for the time and temperature dependence of the experimental data.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa