RESUMO
Introduction: Theileria orientalis Ikeda genotype is an emerging cattle disease in the US. Since 2017, when T. orientalis Ikeda was discovered in beef cattle in two counties in Virginia, cattle infections have risen to include ~67% of Virginia counties and 14 states. Consistent with New Zealand studies, many infected herds in Virginia were >90% positive upon initial testing without overt evidence of infection. Central bull tests present a unique opportunity to study the effects of T. orientalis Ikeda infections, as bulls from multiple source herds are consolidated. The objective of this study was to determine if infection with T. orientalis Ikeda affected the average daily gain (ADG), adjusted yearling weight (AYW) and breeding soundness of bulls at two test stations in Virginia over a period of years. Materials and methods: The bulls were fed and housed similarly to compare their growth performance and breeding soundness. For T. orientalis Ikeda testing, DNA was extracted from whole blood for quantitative polymerase chain reaction. Results: The number of bulls infected with T. orientalis Ikeda at initial delivery to the stations increased significantly over the years studied. Multivariable linear regression models, using Angus bulls from Virginia test stations, indicated no significant effect on ADG or AYW in bulls that became test positive during the test or were positive for the duration, compared to Angus bulls that were negative for the duration. At LOC A, the odds of passing a breeding soundness exam (BSE) were not significantly different for bulls that turned positive during the test or were positive for the duration, compared to bulls that were negative for the duration of the test. At LOC B, bulls that became positive during the test were 2.4 times more likely (95% CI: 1.165-4.995, p = 0.016) to pass their BSE compared to bulls that remained negative throughout the test. Discussion: We do not suppose that an obscured infection of T. orientalis Ikeda is protective for bulls to pass a BSE. However, this study demonstrates an obscured infection of T. orientalis Ikeda does not negatively affect weight gain or achievement of a satisfactory BSE rating at the central bull test stations in Virginia.
RESUMO
Haemonchus contortus is a critical parasite of goats and sheep. Infection by this blood-feeding gastrointestinal nematode (GIN) parasite has significant health consequences, especially in lambs and kids. The parasite has developed resistance to virtually all known classes of small molecule anthelmintics used to treat it, giving rise in some areas to multidrug resistant parasites that are very difficult to control. Thus, new anthelmintics are urgently needed. Bacillus thuringiensis (Bt) crystal protein 5B (Cry5B), a naturally occurring protein made by a bacterium widely and safely used around the world as a bioinsecticide, represents a new non-small molecule modality for treating GINs. Cry5B has demonstrated anthelmintic activities against parasites of monogastric animals, including some related to those that infect humans, but has not yet been studied in a ruminant. Here we show that H. contortus adults are susceptible to Cry5B protein in vitro. Cry5B produced in its natural form as a spore-crystal lysate against H. contortus infections in goats had no significant efficacy. However, a new Active Pharmaceutical Ingredient (API) paraprobiotic form of Cry5B called IBaCC (Inactivated Bacterium with Cytosolic Crystals), in which Cry5B crystals are encapsulated in dead Bt cell wall ghosts, showed excellent efficacy in vitro against larval stages of H. contortus and relative protein stability in bovine rumen fluid. When given to sheep experimentally infected with H. contortus as three 60 mg/kg doses, Cry5B IBaCC resulted in significant reductions in fecal egg counts (90%) and parasite burdens (72%), with a very high impact on female parasites (96% reduction). These data indicate that Cry5B IBaCC is a potent new treatment tool for small ruminants in the battle against H. contortus.
Assuntos
Anti-Helmínticos , Hemoncose , Haemonchus , Nematoides , Probióticos , Doenças dos Ovinos , Animais , Anti-Helmínticos/uso terapêutico , Bovinos , Fezes , Feminino , Cabras , Hemoncose/tratamento farmacológico , Hemoncose/veterinária , Contagem de Ovos de Parasitas , Ovinos , Doenças dos Ovinos/tratamento farmacológico , Doenças dos Ovinos/parasitologiaRESUMO
The effects of thermal acclimation in two Nototheniid species, the stenothermal Antarctic Trematomous bernacchii and the eurythermal New Zealand Notothenia angustata, were investigated. Serum osmolality, gill Na/K-ATPase activity, sodium pump density and ouabain affinity were determined. Both fish were acclimated at their upper and lower viable thermal temperatures. Warm acclimation (+4 degrees C) of the T. bernacchii significantly decreased their serum osmolality from 550 to 450 mOsm/kg compared to cold-acclimation (-1.5 degrees C) and this was accompanied by a two-fold increase in gill Na/K-ATPase activity. Warm-acclimation (+14 degrees C) of N. angustata did not significantly change their serum osmolality from 330 mOsm/kg or gill Na/K-ATPase activity compared to the cold-acclimated (+4 degrees C) N. angustata. Using [(3)H]ouabain binding techniques, the B(max) and K(d) values of gill Na/K-ATPase enzymes were determined. No difference in the B(max) or K(d) of the warm-acclimated T. bernacchii accounted for the increase in Na/K-ATPase activity. We conclude that the change in gill Na/K-ATPase activity in the warm-acclimated T. bernacchii is not mediated by an increase in the number of enzyme sites and is not reflected in a change in ouabain affinity for Na/K-ATPase.